

भाकृअनुप-अखिल भारतीय समन्वित मसाला अनुसंधान परियोजना की XXXV वीं वार्षिक समूह बैठक XXX V Annual Group Meeting of ICAR-All India Coordinated Research Project on Spices

15 - 17 अक्टूबर 2024 15 - 17 October 2024

एजेंडा नोट AGENDA NOTES

चौधरी चरण सिंह हरियाणा कृषि विश्वविद्यालय (CCS-HAU), हिसार, हरियाणा

Choudhary Charan Singh Haryana Agricultural University (CCS-HAU), Hisar, Haryana

भाक्अनुप-अखिल भारतीय समन्वित मसाला अनुसंधान परियोजना ICAR-ALL INDIA COORDINATED RESEARCH PROJECT ON SPICES ICAR-Indian Institute of Spices Research Kozhikode-673012, Kerala

XXXV Annual Group Meeting of ICAR-All India Coordinated Research Project on Spices

15 - 17 October 2024

Choudhary Charan Singh Haryana Agricultural University (CCS-HAU), Hisar, Haryana

AGENDA NOTES

ICAR-ALL INDIA COORDINATED RESEARCH PROJECT ON SPICES INDIAN INSTITUTE OF SPICES RESEARCH KOZHIKODE – 673 012, KERALA

Agenda Notes:

XXXV Annual Group Meeting of ICAR-All India Coordinated Research Project on Spices

Published by:

Project Coordinator [Spices]
ICAR-All India Coordinated Research Project on Spices (AICRPS)
ICAR-Indian Institute of Spices Research
Kozhikode - 673 012,
Kerala.

Compiled & edited by:

S. Mukesh Sankar Nafid Cheekilote Geethu Binoy R. Bharathan D. Prasath

Cover Design:

A. Sudhakaran

October, 2024

CONTENTS

Sl. No.	Particulars	Page No.
1.	Session I: Genetic Resources and Crop Improvemen	nt 01-46
	1.1. Black Pepper	4
	1.2. Cardamom	6
	1.3. Large Cardamom	9
	1.4. Ginger	10
	1.5. Turmeric	19
	1.6. Tree Spices	28
	1.7. Coriander	31
	1.8. Cumin	35
	1.9. Fennel	37
	1.10. Fenugreek	40
	1.11. Ajwain	43
	1.12. Saffron	44
	1.13. Kalazeera	45
2.	Session II: Crop Management	47-68
	2.1. Cardamom	48
	2.2. Large Cardamom	50
	2.3. Ginger	51
	2.4. Turmeric	56
	2.5. Coriander	61
	2.6. Fennel	62
	2.7. Fenugreek	64
3.	Session III: Crop Protection & Food Safety	69-95
	3.1. Black Pepper	71
	3.2. Cardamom	73
	3.3. Ginger	76
	3.4. Turmeric	82
	3.5. Cumin	87
	3.6. Fenugreek	89
	3.7. Nigella	91
	3.8. Seed Spices	92
4.	Research Programmes at a glance (Crop-wise)	96

TECHNICAL SESSION I

GENETIC RESOURCES AND CROP IMPROVEMENT

Project code	Title	Centres				
Black pepper						
PEP/CI/1.1	Germplasm collection, characterization,	Ambalavayal, Dapoli, Panniyur,				
evaluation and conservation		Pundibari, Sirsi, Yercaud				
PEP/CI/3.7	CVT 2018 on black pepper - Series IX	Ambalavayal, Chintapalli, Dapoli, Kozhikode, Panniyur, Sirsi, Yercaud				
	Cardamom	Tereaud				
CAR/CI/1.1	Germplasm collection, characterization, evaluation, and conservation	Mudigere, Pampadumpara				
CAR/CI/3.9	CVT on hybrids of small cardamom-2018 – Series IX	Appangala, Mudigere, Myladumpara, Pampadumpara, Sakleshapura				
CAR/CI/4.4	Multi-location evaluation of thrips- tolerant cardamom lines	Appangala, Mudigere, Myladumpara, Pampadumpara, Sakleshapura				
CAR/CI/4.5	MLT on leaf blight tolerant lines of small cardamom 2018 Series	Appangala, Mudigere, Myladumpara, Pampadumpara, Sakleshapura				
	Large cardamom					
LCA/CI/1.1	Germplasm collection and evaluation of large cardamom	ICAR Regional Station, Gangtok, ICRI Regional Research Station, Gangtok				
LCA/CI/2.1	CVT on large cardamom	ICAR Regional Station, Gangtok, ICRI Regional Research Station, Gangtok, CAU, COH, Pasighat, Arunachal Pradesh				
	Ginger					
GIN/CI/1.1	Germplasm collection, characterization, evaluation and conservation	Barapani, Dholi, Kumarganj, Pottangi, Pundibari, Raigarh, Solan				
GIN/CI/2.5	CVT on disease tolerance in ginger 2019	Barapani, Chintapalli, Gangtok, Kozhikode, Nagaland, Pottangi, Pundibari, Raigarh				
GIN/CI/2.6	CVT on bold ginger	Appangala, Kozhikode, Pottangi, Raigarh, Sikkim				
GIN/CI/2.7	CVT on high essential oil ginger genotypes	Appangala, Kozhikode, Nagaland, Pottangi, Umiam				
GIN/CI/4.3	Evaluation of genotypes of ginger for vegetable purpose (observational trial)	Chintapalli, Gangtok, Kozhikode, Mizoram, Nagaland, Pottangi, Pundibari				
mvn / 22 / 1	Turmeric	I				
TUR/CI/1.1	Germplasm collection, characterization, evaluation and conservation	Barapani, Coimbatore, Dholi, Guntur, Kammarpally, Kumarganj, Pasighat, Pottangi, Pundibari, Raigarh, Solan				

TUR/CI/2.8	CVT on high yield and high curcumin	Coimbatore, Guntur, Kammarpally, Kanke, Kozhikode, Navsari, Pasighat, Pottangi, Raigarh,
TUR/CI/2.9	CVT on light yellow colour turmeric for specialty market	Coimbatore, Guntur, Kammarpally, Kanke, Kozhikode, Pasighat, Pottangi
TUR/CI/2.11	CVT on black turmeric Curcuma caesia	Barapani, Coimbatore, Kozhikode, Kumarganj, Mizoram, Navsari, Pottangi, Pundibari, Sirsi
	Tree spices	
TSP/CI/1.1	Germplasm collection, characterization, evaluation and conservation of clove, nutmeg and cinnamon	Dapoli, Pechiparai
TSP/CI/1.2	Collection of unique germplasm in tree spices	Dapoli, Pechiparai
TSP/CI/2.4	Coordinated Varietal Trial on farmer's varieties of nutmeg	Dapoli, Pechiparai, Thrissur
TSP/CI/2.5	Coordinated Varietal Trial on Nutmeg- Series 2023	Dapoli, Kozhikode, Pechiparai and Thrissur
Project Mode	Evaluation of nutmeg genotypes	Thrissur
	Coriander	
COR/CI/1.1	Germplasm collection, description,	Coimbatore, Dholi, Guntur, Hisar,
, ,	characterization, evaluation, conservation and screening against diseases	Jagudan, Jobner, Kumarganj, Raigarh
COR/CI/2.8	Coordinated varietal trial on coriander–2021- Series XI	Ajmer, Coimbatore, Dholi, Guntur, Hisar, Jabalpur, Jagudan, Jobner, Kalyani, Kota, Kumarganj, Navsari, Pantnagar, Raigarh, Sanand
COR/CI/4.1	Quality evaluation in coriander	Jobner
	Cumin	
CUM/CI/1.1	Germplasm collection, characterization, evaluation, conservation and screening against diseases	Jagudan, Jobner, Mandor, Sanand
CUM/CI/2.5	Coordinated varietal trial on cumin-2021	Ajmer, Jagudan, Jobner, Mandor, Sanand
	Fennel	
FNL/CI/1.1	Germplasm collection, characterization, evaluation, conservation and screening against diseases	Dholi, Hisar, Jagudan, Jobner, Kumarganj
FNL/CI/2.8	Coordinated varietal trial on fennel–2021 Series XI	Ajmer, Dholi, Hisar, Jabalpur, Jagudan, Jobner, Kumarganj, Navsari, Pantnagar
	Fenugreek	
FGK/CI/1.1	Germplasm collection, characterization, evaluation, conservation and screening against diseases	Dholi, Guntur, Hisar, Jagudan, Jobner, Kumarganj, Raigarh

FGK/CI/2.5	Coordinated varietal trial on fenugreek- 2021 Series XI	Ajmer, Dholi, Hisar, Jabalpur, Jagudan, Jobner, Kalyani, Kota, Kumarganj, Navsari, Pantnagar, Raigarh					
	Ajwain						
AJN/CI/2.1	Coordinated varietal trial-2022 Series	Ajmer, Guntur, Hisar, Jagudan, Jobner, Kumarganj, Raigarh					
	Saffron						
Project mode	Conservation, evaluation and utilization of exotic and indigenous saffron germplasm lines	Pampore					
	Kalazeera						
Project mode	Exploration, collection and conservation of kalazeera from high altitudes of northern Himalayas	Pampore					

PROGRESS REPORT OF THE PROJECTS

GENETIC RESOURCES AND CROP IMPROVEMENT

BLACK PEPPER

Project Code	PEP/CI/1.1	Project Title	Germplasm collection, characterization,			
	evaluation and conservation					
Centres	Ambalavayal, Dapoli, Panniyur, Pundibari, Sirsi, Yercaud					
Date of start		Date of closur	e/ duration Long term			
Work done/ach	ievements durin		· -			
Ambalavayal	A total of 12	accessions are	maintained in the germplasm including released			
	varieties like P	anniyur 1, Panni	yur 2, Panniyur 3, Panniyur 4, Panniyur 5, Panniyur			
	6, Panniyur 7,	Panniyur 8, Sree	kara, 9 IISR Thevam, 10 IISR Girimunda, 12 IISR			
	Malabar Excel	l. The age-old a	nd senile vines were removed and cuttings were			
	newly planted.	The accessions	are in juvenile stage.			
Dapoli	Germplasm co	ollected from v	arious locations in the Konkan region is being			
		0 1	ock, at the Department of Horticulture. Vine height			
	_		ong the different accessions, maximum vine height			
			I-28 (7.6 m), while the minimum height was in			
		, ,	SKKVPN-19 had the highest number of spikes/vine			
			7 had the fewest (28). Maximum dry berry yield per			
			DBSKKVPN-19 (1.200 kg), while the minimum			
	•	KVPN-23 (0.18				
Panniyur	_	• •	57 wild & related types and 3 exotic types of black			
	* * *	•	PRS, Panniyur. Ten new accessions were collected			
			fields and planted in the nursery for multiplication.			
			he genotypes PRS 14 and PRS 62 were the top			
			rith 13.4 kg green berry yield and 4470 spikes/vine			
			kg green berry yield and 806 spikes/vine. Spike			
	_		124 (17.05 cm) followed by PRS 62 (13.17 cm).			
		-	es/ spikes was more for PRS 124 (85.20) followed below weight was maximum for PRS 17 (22 g)			
	_		The per cent dry recovery was maximum for PRS			
Pundibari	62 (35.26 %) followed by PRS 158 (35.07 %) and PRS 124 (34.24 %). Twenty-two black pepper entries were maintained in 2023-24. Eleven impression of the control of the cont					
Tundibari			niyur – 1, 2, 3, 4, 5, 6 & 7, Sreekara, Subhakara,			
	Pournami, & Panchami) were collected from IISR, Calicut during the year 2000					
		and 2015. One genotype (Kottanadan) was collected from CPCRI, Mohitnagar,				
			earlier years seven new genotypes were collected			
			djoining Bhutan boarder (including Totopara). In			
2014 – 2015, one new genotype was collected from Terai region o						
	All the germplasm are now being maintained in rapid propagation shade. C					
	are also being prepared for multiplication, evaluation and distribution. For t conservation, black pepper germplasms were planted in the university field.					
Sirsi			eased varieties are being maintained and evaluated.			
			ns, V ₂ recorded significantly greater mean height			
	(198.60 cm) compared to others.					
Yercaud	The spike length of different accessions ranged from 9.90 cm to 14.75 cm. The					
	highest spike le	ength was observ	red in PN 11 (14.75 cm) and the lowest spike length			

was observed in PN 77 (9.90 cm). The same accession PN 11 recorded maximum
mean number of berries per spike (102.18) followed by PN 54 (99.42) and PN 84
(97.70). The maximum green berry yield was recorded in PN 1 (10.64 kg vine ⁻¹).
The maximum dry berry yield was recorded in PN 33 (3.84 kg vine ⁻¹) followed by
PN 1 (3.71 kg vine ⁻¹).

Project Code	PEP/CI/3.7	Project Title CVT on black pepper 2018-Series IX			
Centres	Ambalavayal,	Chintapalli, Dapoli, Kozhikode, Panniyur, Sirsi, Yercaud			
Date of start	2018	Date of closure/ duration TBD			
Experimental de	1	Entries: 11 1. HP 780 (IISR) 2. HP 1411 (IISR) 3. OPKM (IISR) 4. HP 117 x Thommankodi (IISR) 5. Kumbakkal (IISR) 6. Ponmani (IISR) 7. PRS 137 (Panniyur) 8. SV 7 (Sirsi) 9. Kurimalai (Sirsi) 10. IISR Thevam (check) 11. Panniyur 1 (check)			
Observation reco	orded	Design: RBD; Replications:3; Plot size/spacing: 6 standards/plot (3x3 m), 2 plants/ standard 1. Plant height (m)			
Work dang/achi	avoments durin	 Number of branches per vine Average spike length (cm) % of male, female & bisexual flowers Average number of berries per spike (observation to be taken in 50 spikes) Percent fruit set (%) Fresh berry yield (kg vine⁻¹) Dry berry yield (kg vine⁻¹) Percent Bold berries (%) 1000 berry weight (g) Dry Recovery (%) Bulk density (g L⁻¹) Quality Parameter (Piperine, Oleoresin, Essential oil content) Incidence of pest and diseases 			
Ambalavayal	hievements during 2023-24 (centre-wise) A total of 10 entries including national check, Panniyur 1 were maintained well				
Chintapalle Dapoli	and are the in vegetative stage. The trail was initiated during 2020 and the crop is at vegetative stage The trial was planted in November 2018. The variety OPKM was found to be significantly superior over the rest of the varieties which recorded a maximum height of 3.28 m, also had highest number of berries per spike (70.24), as well as the greatest frest				
	and dry weight of berries (0.640 kg & 0.222 kg) and the highest dry weight of berries highest berries per spike (102.3), fresh weight of berries (334.82 g), and dry weight of berries (132.10 g), whereas the lowest plant height (1.52m) was recorded in IIS Thevam. While maximum recovery was noted in Panniyur 1 (37.03 %). The great number of spikes (44) per plant was recorded by HP-780.				

Kozhikode	Among enties evaluated at IISR EF, Peruvannumuzhi, HP 117 x Thommankodi					
	recorded highest yield followed by OPKM. Highest number of berries per spike					
	were recorded in HP 117 x Thommankodi followed by Kumbakal.					
Panniyur	There was significant difference among the treatments with respect to plant height.					
	SV 7 recorded highest plant height of 4.68 m which was on par with Kumbakkal					
	(3.99 m) followed by OPKM (3.54 m), Kurimalai (3.41 m) and Panniyur 1 (3.21					
	m). There was no significant difference between the treatments for no. of branches					
	per vine.					
Sirsi	Among the different accessions, check Panniyur 1 (274.50 cm) significantly					
	greater mean height followed by HP 117 X Thommanakodi (239.00 cm) compared					
	to others. Spikes was observed in only six accessions viz., HP 117 x					
	Thommanakodi, SV -7, Thevam, Panniyur 1, HP 1411 and HP 780					
Yercaud	Among the different entries evaluated, the highest vine length of 3.58 m was recorded by					
	HP 780. another variety SV 7 recorded the highest spike length of 12.32 and the maximum					
	number of berries per spike was recorded in Kurimalai (66.70). The highest green berry					
	yield recorded in HP 1411 (0.557 kg). Highest dry berry yield was recorded by HP 1411					
	$(0.557 \text{ kg vine}^{-1}).$					

CARDAMOM

Project Code	CAR/CI/1.1	Project Title Germplasm collection, characterization,			
			evaluation a	and conservation	
Centres	Mudigere, Pampadumpara				
Date of start	2010	Date of closur	e/ duration	Long term	
Work done/achie	evements during	g 2023-24 (centr	re-wise)		
Mudigere				num plant height is observed in M-2	
	(372.84 cm), MCC-309 (362.00 cm), PDP-1 (368.73 cm), M-3 (352.45 cm) and				
	M-1(341.74 cm). Maximum tillers per clump was observed in 12-7-D11 (45), 26-				
	16-D-11 (41), CCS-800 (30) and M-1(30).				
Pampadumpara	The existing cardamom accessions in the gene bank are growing well at the new				
	site where they were replanted during the last year. However, they are not yet ready				
	for harvest in the current season. The replanting was successful, and the accessions				
	are adapting to the relocated new site. From this year onwards harvesting can be				
	done. 107 accessions has got IC number from NBPGR.				

Project Code	CAR/CI/3.9	Project Title	CVT 2018 on hybrids of cardamom-Series IX	
Centres	Appangala, Mudigere, Myladumpara, Pampadumpara,			ndumpara, Sakaleshpura
Date of start	2018	Date of closur	e/ duration	TBD
Experimental de	tails	Design: RBD	; Replications	s:3; Plot size/spacing:
		3×3m,12plan	ts/plot	
		Genotypes		
		1. (GG×NKE19)×Bold (Appangala)		
		2. Bold \times (GG \times CCS 1) (Appangala)		
		3. GG × NKE 19 (Appangala)		
		4. MH.C-1 (Myladumpara)		
		5.MH.C-2 (Myladumpara)		
		6. SHC – 1 (Sakleshpura)		
		7. SHC-2 (Sakleshpura)		
		8. PH-13 (Pampadumpara)		

	9. PH-14 (Pampadumpara)
	10. Njallani Green Gold (check)
Observation reco	orded 1. Plant height (m)
	2. Number of tillers
	3. Number of bearing tillers
	4. Number of panicles
	5. Panicle length (cm)
	6. Number of capsules
	7. Yield (kg ha ⁻¹)
Work done/achie	evements during 2023-24 (centre-wise)
Appangala	During 2023-24, hybrid Bold × IC 547219 recorded the highest fresh weight per
	plant (1.71 kg plant ⁻¹) as well as dry weight per plant (0.32 kg plant ⁻¹) followed by
	PH-13 with 1.43 kg plant ⁻¹ and 0.27 kg plant ⁻¹ fresh and dry weight per plant,
	respectively. Essential oil content varied from 7.25 % (PH – 13) to 9.13 % (Njallani
	green gold). The hybrid Bold × IC 547219 (67.47 %) which recorded the higher
	yield also recorded high percentage of > 7 mm capsules followed by PH-13
	(58.89%).
Mudigere	Among the 10 Hybrids, $(GG \times Bold) \times Appangala-1$ was observed highest plant
	height (286.80 cm) followed by (GG × NKE 19) × Bold (275.40 cm). More number
	of suckers obseved in MHC2.
Myladumpara	A total of nine hybrids wer laid out in Randomized Block Design (RBD) with three
	replications and 12 plants per plot adopting a spacing of 3 m x 3 m. More number
	of tillers (23.97) was found in MHC 2 and height of the tallest tiller was more
	(201.71 cm) in MHC 1 compared to other genotypes. Yield was more (89.23 kg
	ha ⁻¹) in MHC 1. Low incidence of pests and diseases was noticed in all the
	genotypes.
Pampadumpara	As the replanting process has been completed two year back, the cardamom plants
	are currently started to yielding. At this point, only data related to vegetative
	characteristics is available for evaluation. We have to wait for another one year for
	getting uniform data on yield characters. As the plants continue to progress, further
	data on their growth, yield, and other traits will be collected and analyzed, for
0.1.1.1	performance and potential.
Sakaleshapura	During the reporting season, data on growth and yield character were recorded and
	analysed. SHC-2 produced significantly more yield (218.5 kg ha ⁻¹) followed by
	Bold \times IC 547219 (194.6 kg ha ⁻¹).

Project Code	CAR/CI/4.4	Project Title	Multilocation evaluation of thrips-tolerant			
			cardamom lines			
Centres	Appangala, Mu	ıdigere, Myladumpara, Pampadumpara, Sakaleshpura				
Date of start	2017	Date of closure	e/ duration	TBD		
Experimental de	tails	Genotypes: 6				
		1. IC 349362				
		2. IC 349364				
		3. IC 349370				
		4. IC 349606				
		5. Njallani Green Gold				
		6. Local check from respective centre				
		Design: RBD; Replications:4; Plot size/spacing: 3×3m, 12				
		plants/plot				
Observation reco	orded	1. Plant height (m)				

	2. Number of tillers		
	3. Number of bearing tillers		
	4. Number of panicles		
5. Panicle length (cm)			
	6. Number of capsules		
	7. Yield (kg ha ⁻¹)		
Work done/achie	evements during 2023-24 (centre-wise)		
Appangala	Among the thrips tolerant genotypes, IC 349364 (T ₃) recorded the highest plant		
	height (199 cm), the highest average number of panicles (12.8), the longest panicle		
	length (142.6 cm), and the highest number of capsules (12.4). The percent average		
	of thrips damage on capsules were ranged from 6.4 to 25.8 percent across all the		
	treatments. The lowest thrips damage (6.4%) was recorded in the genotype IC		
	349606 (T ₂), followed by IC 349370 (7.1%),		
Mudigere	Continued the trial. Crop is in vegetative stages and vegetative data were recorded.		
Myladumpara	Infestation of thrips (nymphs) was assessed in the leaf sheaths of all the lines.		
	Observations on thrips population were recorded at monthly intervals on different		
	cardamom accessions. Among the accessions, IC 349370 has low thrips incidence		
	than other genotypes.		
Pampadumpara	The experiment comprises six cardamom accessions, namely IC 349362, IC		
	349364, IC 349370, IC 349606, Njallani green gold, and PV 2. This experiment is		
	in its initial stage of growth and development. The varieties are yielding now. The		
	stabilized yield data can be supplemented in future		
Sakaleshapura	The trial was laid out during August, 2017. As per the data recorded during the		
	reporting year, thrips population was high in Njallani followed by IC 349362. The		
	percentage of thrips damage (capsule) was less in IC 349364 followed by IC		
	349606.		

Project Code	CAR/CI/4.5	Project Title	MLT on leaf blight tolerant lines of small
Troject Code	CAR/CI/4.3	Troject Title	
			cardamom
Centres	Appangala, My	ladumpara, Pan	npadumpara, Sakleshpur, Mudigere
Date of start	2017-18	Date of closur	e/ duration TBD
Experimental de	tails	Leaf blight resi	stant accessions:
		IC – 349650 IC	C – 547222, IC – 547223, IC – 547156,
		IIC - 349649, 1	IC – 349648
		Susceptible che	eck: IISR Vijetha
		Resistant check	ks: Appangala 1, Njallani Green Gold 1.
Work done/achie	ork done/achievements during 2023-24 (centre-wise)		
Appangala	The trial with all the entries has been planted in 2020 and established under field.		
	The yield and PDI of second year have been recorded and fresh yield ranged from		
	(88 to 275 kg ha ⁻¹) and disease incidence ranged from 11.66 to 23.11 and maximum		
	disease incidence was recorded in IISR Vijetha and least incidence was recorded		
	in Njallaani G	reen Gold, IC34	19650 and IC349649. The disease incidence was
	recorded during September and November 2023.		
Myladumpara	During 2023, data on growth characters such as tillers/clump, tiller height (cm) and		
	percent disease index (PDI) were recorded. The PDI was least in IC 349648 (5.95)		
	followed by IC 547223 (6.33). The susceptible check IISR Vijetha showed highest		
	PDI (8.97) followed by IC 547156 (8.52).		
Pampadumpara	In this experin	n this experiment, a total of six cardamom accessions, namely IC 349650, IC	
	547222, IC 54	7223, IC 547156	6, IC 349649, and IC 349648, have been evaluated

	alongside three check varieties: IISR Vijetha (susceptible check), Appangala 1, and Green Gold (resistant check). The genotypes are giving stabilized yield and observation on blight characters and yield characters are taking regularly.
Sakleshpura	Among the accessions, lowest PDI was observed in IC547156 (6.66) and IC 349656 (8.33). Whereas highest PDI value observed with accession IISR Vijetha (30.0). The number of panicles were more in IC349649 (14.5) followed by IC547222 (12.0). Highest yield was recorded in IC 349649 (204 kg ha ⁻¹) and IC 547222 (198.6 kg ha ⁻¹).
Mudigere	Continued the trial. Crop is in vegetative stages and vegetative data were recorded.

LARGE CARDAMOM

Project Code	LCA/CI/1.1	Project Title	Germplasm	collection and evaluation of large
			cardamom	
Centres	ICAR Regiona	l Station, Gangto	ok, ICRI Regi	onal Research Station, Gangtok
Date of start	2008-09	Date of closur	e/ duration	Long term
Work done/achie	evements during	g 2023-24 (centr	e-wise)	
ICAR Regional	Germplasm exploration survey was carried out in Sikkim and two new accessions			
Station, Gangtok	were collected in collaboration with ICRI, Tadong. Characterisation and			
	evaluation of existing germplasm has been initiated.			
ICRI Regional	Germplasm exploration survey was carried out in Sikkim and Arunachal Pradhesh.			
Research	Since 2009-10, 59 accessions collected. In 2023-24, two new Amomum genotypes			
Station, Gangtok	from Seya Village, Arunachal Pradesh, showing unique capsule traits. Five			
	accessions received IC numbers.			

Project Code	LCA/CI/2.1	Project Title	CVT on la	arge cardamom 2023 – Series I	
Centres	ICAR Regiona	al Station, Gangtok, ICRI Regional Research Station, Gangtok,			
	CAU, COH, Pa	asighat, Arunach	al Pradesh		
Date of start	2023-24	Date of closure	e/ duration	3 years	
Experimental de	tails	Design: RBD;	· .		
		Plot size/space	ing: 30 m ² per	r entry, spacing- 5 ft x 5 ft	
		Genotypes (1	0 nos.)		
		1. SCC 216	(Ramla)		
		2. SCC 217	(Ramla)		
		3. SCC 213(• • •		
		4. SCC 214 (Golsey)			
		5. SCC 242	• /		
		6. SCC 264 (Sawney)			
		7. SCC 307			
			cim 1 (Nationa		
				Traditional cultivar (Sawney)	
		10. Zonal Check/Farmers Traditional cultivar (Seremna)			
Observation recorded		_		igronomic data	
		1. Plant h	• , ,		
		2. Number of leaves/tiller			
		3. Number of tillers/clump			
		4. Number of productive tillers			
		5. Leaf length (cm)			

6. Leaf breadth (cm) 7. Number of days to flowering 8. Number of days to maturity 9. Number of spike/clump 10. Number of spike/clump 11. Number of spike/clump 12. Fresh yield/ plant (g) and per hectare (kg) 13. Dry yield/plant (g) and per hectare (kg) 14. Diseases and insect pests (if any) 15. Quality aspects such as color and grade of the capsules, oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Among the different large cardamom germplasms, SCC 214 (Golsey) performed significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the					
8. Number of days to maturity 9. Number of spike/clump 10. Number of spike/clump 11. Number of seed/capsule 12. Fresh yield/ plant (g) and per hectare (kg) 13. Dry yield/plant (g) and per hectare (kg) 14. Diseases and insect pests (if any) 15. Quality aspects such as color and grade of the capsules, oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Among the different large cardamom germplasms, SCC 214 (Golsey) performed significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T2 (5.3) followed by T1 (5.1), T9 (5.0) and T3 (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		6. Leaf breadth (cm)			
9. Number of spike/clump 10. Number of seasule/spike 11. Number of seed/capsule 12. Fresh yield/plant (g) and per hectare (kg) 13. Dry yield/plant (g) and per hectare (kg) 14. Diseases and insect pests (if any) 15. Quality aspects such as color and grade of the capsules, oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok ICAR Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok Station, Gang		7. Number of days to flowering			
10. Number of capsule/spike 11. Number of seed/capsule 12. Fresh yield/ plant (g) and per hectare (kg) 13. Dry yield/plant (g) and per hectare (kg) 14. Diseases and insect pests (if any) 15. Quality aspects such as color and grade of the capsules, oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok ICRI Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		8. Number of days to maturity			
11. Number of seed/capsule 12. Fresh yield/ plant (g) and per hectare (kg) 13. Dry yield/plant (g) and per hectare (kg) 14. Diseases and insect pests (if any) 15. Quality aspects such as color and grade of the capsules, oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok isginificantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		9. Number of spike/clump			
12. Fresh yield/plant (g) and per hectare (kg) 13. Dry yield/plant (g) and per hectare (kg) 14. Diseases and insect pests (if any) 15. Quality aspects such as color and grade of the capsules, oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Tames and the different large cardamom germplasms, SCC 214 (Golsey) performed significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok Stat		10. Number of capsule/spike			
13. Dry yield/plant (g) and per hectare (kg) 14. Diseases and insect pests (if any) 15. Quality aspects such as color and grade of the capsules, oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Tamong the different large cardamom germplasms, SCC 214 (Golsey) performed significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		11. Number of seed/capsule			
14. Diseases and insect pests (if any) 15. Quality aspects such as color and grade of the capsules, oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		12. Fresh yield/ plant (g) and per hectare (kg)			
15. Quality aspects such as color and grade of the capsules, oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Among the different large cardamom germplasms, SCC 214 (Golsey) performed significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T2 (5.3) followed by T1 (5.1), T9 (5.0) and T3 (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		13. Dry yield/plant (g) and per hectare (kg)			
oil content etc. 16. Economics. BC ratio Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Among the different large cardamom germplasms, SCC 214 (Golsey) performed significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		14. Diseases and insect pests (if any)			
16. Economics. BC ratio Weather parameters		15. Quality aspects such as color and grade of the capsules,			
Weather parameters 1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok Among the different large cardamom germplasms, SCC 214 (Golsey) performed significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		oil content etc.			
1. Maximum & minimum temperatures 2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		16. Economics. BC ratio			
2. Maximum & minimum humidity 3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok Tagin and the different large cardamom germplasms, SCC 214 (Golsey) performed significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T2 (5.3) followed by T1 (5.1), T9 (5.0) and T3 (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		Weather parameters			
3. Rainfall 4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok ICRI Regional Research ICRI Regional Research Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok Station		1. Maximum & minimum temperatures			
4. Rainy days 5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok St		2. Maximum & minimum humidity			
5. Others Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok ICAI Regional Among the different large cardamom germplasms, SCC 214 (Golsey) performed significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T2 (5.3) followed by T1 (5.1), T9 (5.0) and T3 (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		3. Rainfall			
Edaphic factors 1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok ICAR Regional Regional Research ICAR Regional Research		4. Rainy days			
1. pH 2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		5. Others			
2. Nutrient status 3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok Station, Gangtok Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok Stati		Edaphic factors			
3. Other physico - chemical parameters of soil Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok ICRI Regional Research Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok Station, Gangtok Station, Gangtok ICRI Regional Research Station, Gangtok Stati		1			
Nutrient applied (N, P, K & others) Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station, Gangtok at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok Station, Gangtok Station, Gangtok ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		2. Nutrient status			
Work done/achievements during 2023-24 (centre-wise) ICAR Regional Station, Gangtok Station		3. Other physico - chemical parameters of soil			
ICAR Regional Station, Gangtok Station, Gangtok Station, Gangtok Significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the		± •			
Station, Gangtok significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check. ICRI Regional Research The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the	Work done/achie	evements during 2023-24 (centre-wise)			
Station, Gangtok significantly better in term of plant height, number of leafs per plant, leaf area index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check. ICRI Regional Research The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the	ICAR Regional	Among the different large cardamom germplasms, SCC 214 (Golsev) performed			
index, leaf length, leaf width and number of tillers per plant which was statistically at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the	\mathcal{L}				
at par with SCC 213 (Golsey) and significantly higher than local and national check ICRI Regional Research Station, Gangtok of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the	, ,				
ICRI Regional Research Station, Gangtok The experiment was started during 2023 with 10 treatments. Growth data was recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the					
Research recorded for the initial year from ICRI Pangthang farm. It is observed that number of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the	ICRI Regional				
Station, Gangtok of immature tillers/clump was more in T ₂ (5.3) followed by T ₁ (5.1), T9 (5.0) and T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the					
T ₃ (5.0). ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the					
ICAR-KVK, Since CAU Pasighat, Arunachal Pradesh was not suitable for large cardamom; the	,				
	ICAR-KVK,				
Anjaw trial was initiated at ICAR-KVK, Anjaw Arunachal Pradesh. Crop went failure due	Anjaw	trial was initiated at ICAR-KVK, Anjaw Arunachal Pradesh. Crop went failure due			
	· ·	to wild animal damge			
Pradesh					

GINGER

Project Code	GIN/CI/1.1	Project Title	Germplasm	collection, characterization,
			evaluation a	nd conservation
Centres	Barapani, Dholi, Kumarganj, Pottangi, Pundibari, Raigarh, Solan			
Date of start	1993	Date of closur	e/ duration	Long term
Work done/achie	nievements during 2023-24 (centre-wise)			
Barapani	Thirty two (32) accessions of ginger having Accession No. from IC-584322 to IC-			
	584364 were maintained and evaluated. Among the accessions wider variability			
	was observed for all the agro morphological traits. The plant height ranged from			
	53.80 cm - 77.50 cm, and the highest plant height was recorded in IC-584332			
	(77.50cm) follo	owed by IC-584	325 (74.17cm	n). Likewise, leaf length ranged from
	20.2 cm to 28.3	8 cm and the high	ghest length v	vas observed in IC-584325 (28.8cm),

	followed by IC584337 (25.37cm). IC-584325 also recorded the highest leaf breadth (3.2cm). However, the lowest leaf breadth was found in IC-584351 (1.8 cm). The number of tillers per plant ranged from 3.30-6.37 and the maximum number of tillers was in IC-584337 (6.37) followed by IC-584364 (6.10). Similarly, the highest number of leaves per plant was recorded highest in IC-584332 (38.13) followed by IC-584335 (34.97) and the lowest in IC-584356 (21.20). Further, yield per plant ranged from 142.50-375.60 per plant and highest yield per plant was recorded from the accession IC-584363 (375.60g) followed by IC-584353 (346.40g) and IC-584322(333.40g). IC-584363 (16.69 t) also recorded the highest yield in terms of t ha ⁻¹ . After biochemical analysis, the highest oleoresin content was recorded in IC-584346 (6.20%) followed by IC584325 (5.96%), while IC-584341 recorded the highest dry matter content (22.60%). IC584359 recorded the highest essential oil (2.90%)
Dholi	Among 40+2 check ginger accessions evaluated, accession RG-10 registered highest yield of (23.91 t ha ⁻¹) followed by RG-44 (23.78 t ha ⁻¹) and RG-60 (23.62 t ha ⁻¹) as compared to check variety, Nadia (20.61 t ha ⁻¹).
Kumarganj	Total collected 66 Germplasm are maintained at the station. All the 66 Germplasm were evaluated and found promising NDG-6 (165 g plant ⁻¹) followed by NDG-28 (152 g plant ⁻¹) and NDG-47 (148 g plant ⁻¹).
Pottangi	Out of 198 ginger germplasm studied, 35 entries yielded more than 5 Kg fresh rhizomes per 3m ² plot with the mean yield of 4.2 Kg 3m⁻² during 2023-24. The range of plot yield being 0.8 Kg 3m⁻² (PGS-119) to 8.3 Kg 3m⁻² (S-62) in tested germplasms.
Pundibari	Thirty-eight (38 germplasm +2 released varieties) germplasm of ginger were grown for during 2023-24 at Pundibari centre, Uttar Banga Krishi Viswavidyalaya. Lowest rhizome rot and wilt disease incidence was recorded in the germplasm GCP 5 (14.29%) followed by GCP-14 (14.29%), GCP 9 (14.44%), GCP 30 (15.33%) and GCP 4 (15.33%). Highest rhizome yield was recorded in GCP 9 (12.02 t ha ⁻¹) followed by GCP 13 (11.45t ha ⁻¹), GCP 37 (11.29t ha ⁻¹) and few lines namely GCP 22, GCP 32, GCP 56, GCP 14, GCP 5, GCP 4 and GCP 3 showed yield more than 10 t ha ⁻¹ . Two new ginger genotypes collected in the year 2023-24 from Manikchak, Malda (GCP 58) and Suripara, Alipuduar (GCP 59) at Pundibari Centre. These lines planted in the year 2023-24 for characterization. The two lines showed yield of 12 t ha ⁻¹ and 10t ha ⁻¹ respectively and moderately resistant to rhizome rot and wilt disease.
Raigarh	At present at AICRP on Spices, CARS, Raigarh total 41 (38 germplasms and three checks Suprabha, Suruchi and IISR Varda) germplasms of Ginger maintained. For rhizome yield Indira Ginger -14 (20 t ha ⁻¹), recorded maximum rhizome yield followed by IG-11 (16.8 t ha ⁻¹), and IG-13 (15.7 t ha ⁻¹) over two national checks Suruchi (9.5 t ha ⁻¹) and Suprabha (8.5 t ha ⁻¹). For rhizome yield two genotypes IG-1 and IG 10 recorded 18 t ha ⁻¹ rhizome yield followed by IG 13 (15 t ha ⁻¹) and IG 14 (14.6 t ha ⁻¹) over two checks Suprabha and Suruchi (9 t ha ⁻¹ respectively).
Solan	Ginger genotype SG19-11 gave the highest fresh rhizome yield of 216.28 g plant with 3.72% oleoresin content, out of forty genotypes.

Project Code	GIN/CI/2.5	Project Title	CVT on disease tolerance in ginger 2019 – Series
			X

Centres	Barapani, Cl Raigarh	nintapalli, Gangtok, Kozhikode, Nagaland, Pottangi, Pundibari,	
Date of start	2019 Date of closure/ duration 3 years		
Experimental de		Design: RBD; Replications:3; Plot size/spacing: 3×1m, spacing- 25x 25 cm Genotypes 1. R 1.25/4 (M1) (IISR) 2. G 1.00/4 (M2) (IISR) 3. HP 05/15 (M3) (IISR) 4. HP 0.5/2 (M4) (IISR) 5. V 0.5/2 (M5) (IISR) 6. V1E4 1 (Pottangi) 7. V1E4 5 (Pottangi) 8. V2E5 2 (Pottangi) 9. Indira Ginger (Raigarh) 10. IISR Varada (control)	
Observation Recorded		 Sprouting percentage Plant population at 50 DAS Plant height (cm) Number of tillers per clump Fresh weight of clump (g) Fresh rhizome yield per ha (t) Dry rhizome yield per ha (t) Dry recovery (%) Boldness of rhizome Fiber content Oleoresin (%) Essential oil (%) Disease (bacterial wilt, rhizome rot) and pest (shoot borer) incidence, if any 	
Work done/achi	evements duri	ng 2023-24 (centre-wise)	
PC Unit: Pooled analysis report	This trial assesses different ginger genotypes for fresh rhizome yield along with disease tolerance reaction towards soft rot and bacterial wilt under natural conditions across multiple locations and years (2020–2023), aiming to identify varieties harbouring high yield as well as multiple disease-tolerance. Here are the key observations: **Top Performers for yield & disease tolerance analysed individually:* • Indira Ginger emerged as the highest-yielding genotype with a grand mean of 16.5 t ha-1, ranking 1st with a positive index of competition with check (%IOC) of 2.19% giving the top three performance in 10 out of 24 experiments. R 1.25/4 was the second-best performer with a yield of 16.2 t ha-1. IISR Varada (control), genotype, maintained stable performance with a yield of 16.2 t ha-1, ranking 3rd, showing high adaptability across locations like Kozhikode and Raigarh. • HP 05/15 emerged as the most Soft rot disease-tolerant entry with the lowest PDI (15.8%). Its increment over check (%IOC) was 34.47%, indicating strong competitiveness against disease across environments. HP 0.5/2 followed closely with PDI of 18.4% and a high %IOC of 23.52%,		

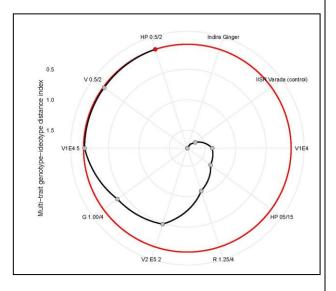
- indicating a high degree of disease tolerance compared to the national check, IISR Varada.
- **HP 05/15** demonstrated the best resistance to bacterial wilt incidence, with a minimum PDI score of **7.8%**, ranking 1st among the tested genotypes. Its %IOC was the highest at **53.25%**, signifying a strong competitive advantage against bacterial wilt across all tested environments. Following R 1.25/4 also showed a mean PDI of 8.6, with %IOC of 48.01%.

Top Performers for simultaneous selection on yield & disease tolerance:

The main aim of this coordinated varietal trial is to identify ginger genotypes that perform well under disease pressure, particularly focusing on bacterial wilt and rhizome rot, while maintaining good fresh rhizome yield (FRY).

Traits Considered for Selection:

Fresh Rhizome Yield per hectare (t ha⁻¹): The primary indicator of productivity. Rhizome Rot (% Disease Incidence): Measures susceptibility to rhizome rot disease. Bacterial Wilt (% Disease Incidence): Measures susceptibility to bacterial wilt disease.


Weightage Assigned:

- Rhizome Rot and Bacterial Wilt are given full weightage (-1) in negative direction (-1) due to the goal of enhancing disease resistance.
- Fresh Rhizome Yield is considered with a positive selection direction, aiming for higher yields, with full weight of 1.

Selection Method: The Multi-trait Genotype-Ideotype Distance Index (MGIDI) was used for simultaneous selection. The MGIDI index identifies genotypes that are close to the ideotype (ideal genotype). Lower MGIDI values indicate genotypes closer to the ideal in terms of the traits measured.

Genotypes and MGIDI Scores:

Genotype	MGIDI
	MOIDI
HP 0.5/2	0.0891
V 0.5/2	0.105
V1E4 5	0.106
G 1.00/4	0.375
V2 E52	0.484
R 1.25/4	1.06
HP 15/5	1.32
V1E4 1	1.39
IISR Varada	1.63
Indira Ginger	1.8
	V 0.5/2 V1E4 5 G 1.00/4 V2 E52 R 1.25/4 HP 15/5 V1E4 1 IISR Varada

Inferences from MGIDI Index:

• **Top-performing genotypes** like *HP 0.5/2* have very low MGIDI values, got selected while exerting 10% selection intensity suggesting they are closer to the ideal genotype. These are the most desirable selections for both yield and disease resistance traits.

Conclusion:

The selection of genotypes using the MGIDI index shows a balance between disease resistance and yield traits. *HP 0.5/2* was the most promising genotypes, showing the lowest MGIDI values and a good balance between disease resistance and yield. Although the selection process slightly reduced yield, the substantial gains in disease resistance (both for rhizome rot and bacterial wilt) indicate that these genotypes are well-suited for environments with high disease pressure.

Barapani	Among the nine genotypes under evaluation, HP 0.5/2 showed the highest fresh rhizome yield of 9.59 t ha ⁻¹ , significantly outperforming the check, IISR Varada
	(5.62 t ha ⁻¹). In terms of rhizome rot resistance; HP 0.5/2 exhibited the best disease resistance with PDI of 17%. G 1.00/4 exhibited the tallest plant height (68.6 cm),
	while HP 05/15 displayed the highest number of tillers per plant (3.0). HP 0.5/2 also excelled in fresh rhizome per clump (316.7 g), over IISR Varada (116.7 g).
Chintapalli	The pooled data (2021-22 to 2023-24) revealed that among the 10 genotypes,
	Indira local recorded the highest plant height (69.94 cm) followed by M1 (66.33
	cm) and number of tillers were highest in V1E4 1 (10.18). IISR-Varada recorded
	the highest fresh weight of the rhizome per plant (230.95 g) and fresh rhizome
	yield/ha (16.53 t ha ⁻¹) whereas less rhizome rot disease incidence was recorded in M3 (17.14%).
Gangtok	Maximum fresh rhizome yield (15.9 t ha ⁻¹) was recorded in HP 05/15, which was
oung.	followed by Indira ginger, but significantly higher than remaining cultivars
Kozhikode	Nine entries (five from ICAR-IISR, four from OUAT and one from IGKV) along
	with check, IISR Varada were evaluated for the year 2023-24. The maximum yield
	was recorded HP0.5/2 (47.60 t ha ⁻¹) followed by V1E4 5 (42.08 t ha ⁻¹) which were
	on par. Least soft rot incidence (<10%) was recorded in HP 0.5/2, HP 0.5/15, V
Nagaland	0.5/2 and V1E4 5. Under the Nagaland foot hill agro-climatic conditions, IISR Varada (control) had
Nagaland	the highest fresh rhizome yield (18.60 t ha ⁻¹), followed by V 0.5/2 (16.44 t ha ⁻¹).
	HP 05/15 demonstrated strong resistance to rhizome rot (21.29%) and bacterial
	wilt (5.89%), outperforming the location mean and making it a top choice for
	disease resistance. Indira Ginger excelled in vegetative growth with the highest
	number of tillers (10.3). IISR Varada had the highest frsh rhizome yield per clump
	(132.4 g), followed by V2 E5 2 (118.5 g).
Pottangi	It was revealed from the observations during 2020-21 and replicated data of 2021-
	22, 2022-23 and 2023-24 that it was revealed from analyzed data that IISR Varada
	showed maximum bacterial wilt symptoms (5.7%) followed by Indira Local
	(5.2%). The highest yield (16.2 t ha ⁻¹) was recorded with V1 E4-5 followed by V
Pundibari	0.5/2 (16.0 t ha ⁻¹), V1 E4-1 (15.9 t ha ⁻¹) and V2 E5-2 (15.5t ha ⁻¹) at Pottangi. Highest rhizome yield was obtained in case of M4 (10.57 t ha ⁻¹) which is closely
Pullulbari	
	followed by M5 (9.86 t ha ⁻¹). Lowest rhizome rot and wilt incidence was recorded in IISR-M4 (11.57%) followed by and M5(12.65%). Highest plant height was
	recorded in Varada (64.20 cm) followed by Raigarh ginger (61.99 cm). Highest
	dry recovery recorded in M4 (21.09%) followed by V1E4-1 (20.50%). Highest
	tiller no recorded in IISR M5 (6.33). No bacterial wilt incidence recorded.
Raigarh	Evaluation of CVT on ginger revealed that range for rhizome yield recorded 13 t
	ha ⁻¹ by G 1.00/4 to highest 28.9 t ha ⁻¹ by Indira Ginger-1. For rhizome yield IG-1
	(28.9 t ha ⁻¹), recorded maximum rhizome yield followed byV1E45 (22.8 t ha ⁻¹)
	over national checkIISRVarada (21.8 t ha ⁻¹) while R1.25/4 (20.9 t ha ⁻¹) at par with
	check IISR Varda.

Project Code	GIN/CI/2.6	Project Title	CVT on bol	d ginger trial Series-2023.
Centres	Appangala, Ko	zhikode, Pottang	gi, Raigarh, S	ikkim.
Date of start	2023	Date of closure	e/ duration	3 years
Experimental de	tails	Design: RBD;	Replications	:3;
		Plot size/space	$ng: 3\times 1m, sp$	pacing- 25x 25 cm
		Genotypes (10))	

	1. G2023-01		
	2. G2023-02		
	3. G2023-03		
	4. G2023-04		
	5. G2023-05		
	6. G2023-06		
	7. G2023-07		
	8. G2023-08		
	9. G2023-09		
	10. G2023-10		
Observation Rec	corded 1. Sprouting percentage		
	2. Plant population at 50 DAS		
	3. Plant height (cm)		
	4. Number of tillers per clump		
	5. Fresh weight of clump (g)		
	6. Fresh rhizome yield per ha (t)		
	7. Dry rhizome yield per ha (t)		
	8. Dry recovery (%)		
	9. Boldness of rhizome		
	10. Fiber content		
	11. Oleoresin (%)		
	12. Essential oil (%)		
	13. Disease (bacterial wilt, rhizome rot) and pest (shoot borer)		
	incidence, if any		
Work done/achie	evements during 2023-24 (centre-wise)		
Appangala	During 2023-24 sufficient planting material for taking up the trial was multiplied		
	and in the current season 2024-25 trial is planted with three replications		
Kozhikode	The CVT, replicated trial has been planted and under vegetative phase.		
Pottangi	Seed multiplication was done in 2023-24. This trial is initiated during 2024-25 in		
1 ottaligi	replication		
Raigarh	New trial on CVT on bold ginger was started at the centre from <i>Kharif</i> 2023. Seed		
Tuiguiii	multiplication of all the entries <i>via</i> protray techniques was done after screening for		
	disease. Plant growth & yield parameters will be evaluated during <i>Kharif</i> 2024 in		
	3 m x 1m plot size.		
Gangtok	Maximum fresh rhizome yield (12.3 t ha ⁻¹) was found in G2023-6 which was		
Cuiistok	statistically at par with G2023-2 and G2023-3 but significantly higher than		
	remaining genotypes, respectively. Ginger genotype G2023-6 followed by G2023-		
	2 and G2023-3 performed better under organic management condition in Sikkim		
	Himalayas.		

Project Code	GIN/CI/2.7	Project Title	CVT on high	h essential oil ginger genotypes.		
Centres	Appangala, Kozhikode, Nagaland, Pottangi, Umiam,			Umiam,		
Date of start	2023	Date of closure/ duration 3 years				
Experimental details		Design: RBD; Replications:3;				
		Plot size/spacing: 3×1m, spacing- 25x 25 cm				
		Genotypes (09)				
		1. G2023-11				
		2. G2023-12	•			
		3. G2023-13				

	4 62022.14		
	4. G2023-14		
	5. G2023-15		
	6. G2023-16		
	7. G2023-17		
	8. G2023-18		
	9. G2023-19		
Observation R			
	2. Plant population at 50 DAS		
	3. Plant height (cm)		
	4. Number of tillers per clump		
	5. Fresh weight of clump (g)		
	6. Fresh rhizome yield per ha (t)		
	7. Dry rhizome yield per ha (t)		
	8. Dry recovery (%)		
	9. Boldness of rhizome		
	10. Fiber content		
	11. Oleoresin (%)		
	12. Essential oil (%)		
	Disease (bacterial wilt, rhizome rot) and pest (shoot borer)		
	incidence, if any		
Work done/acl	hievements during 2023-24 (centre-wise)		
Appangala	During 2023-24 sufficient planting material for taking up the trial was multiplied and in the current season 2024-25 trial is planted with three replications.		
Kozhikode	The CVT, replicated trial has been planted and under vegetative phase.		
Nagaland	Sowing of new trial on CVT on high essiential oil genotypes was completed and		
	data recording progressing.		
Pottangi	Seed multiplication was done in 2023-24. This trial is initiated during 2024-25 in		
	replication		
Umiam	Ten (10) accessions, viz. G 2023-11, G 2023-12, G 2023-13, G 2023-14, G 2023-		
	15, G 2023-16, G 2023-17, G 2023-18, G 2023-19 and local check were		
	evaluated for growth, yield and quality parameters. Highest sprouting %		
	(90.37%) was found in G 2023-14, while the highest plant height was recorded in		
	G 2023-16 (64.87 cm). However, fresh weight/clump (300.87g) and yield t ha ⁻¹		
	(11.29 t ha ⁻¹) were found highest in Local Check while, G 2023-14 recorded the		
	highest oleoresin (5.03%). The Highest essential oil % was found in G 2023-13		
	(2.50%)		

Project Code	GIN/CI/4.3	Project Title	Evaluation	of genotypes	of ginger	for
			vegetable pi	urpose		
Centres	Chintapalli, Gangtok, Kozhikode, Mizoram, Nagaland, Pottangi, Pundibari,					
Date of start	2018	Date of closure/	duration	2022-23 (4 ye	ars)	
Experimental d	etails	Design: RBD; R	eplications: 3	3;		
		Plot size/spacing	g: 3×1m, spac	eing- 25x 25 cm	l	
			Genotypes			
		1. Gorubathani	(Pundibari)			
		2. Bold Nadia	(Nagaland)			
		3. Bhaise (Gan	gtok)			
		4. John's Ging	er (IISR)			
		5. PGS 121(Pc	ttangi)			
		6. PGS 95 (Pot	ttangi)			

	7. PGS 102 (Pottangi)		
Observation Recorded	Sprouting percentage		
	2. Plant population at 50 DAS		
	3. Plant height (cm)		
	4. Number of tillers per clump		
	5. Fresh weight of clump (g)		
	6. Fresh rhizome yield per ha (t)		
	7. Dry rhizome yield per ha (t)		
	8. Dry recovery (%)		
	9. Boldness of rhizome		
	10. Fiber content		
	11. Oleoresin (%)		
	12. Essential oil (%)		
	13. Disease (bacterial wilt, rhizome rot) and pest (shoot		
	borer) incidence, if any		

Work done/achievements during 2023-24 (centre-wise)

PC Unit: Pooled analysis report The experiment evaluated ginger genotypes across multiple years and locations to assess their performance for fresh rhizome yield, targeting suitability for vegetable purposes. Here are the key insights:

Performance Across Genotypes:

Bold Nadia emerged as the top-performing genotype across all locations and years with a mean yield of **12.21** t ha⁻¹ with **9.12%** better performance over check. It showed Potiential performance, especially in the Nagaland location during 2019 (25.51 t ha⁻¹). Following Bold Nadia, PGS-121 performed well, with a mean yield of **12.14** t ha⁻¹ with **8.49%** IOC, John's Ginger also showed relatively high mean yields of **12.02** t ha⁻¹ with 7.42% IOC with at par performance.

Environmental Influence:

The environment influenced the yield performance, with variations across locations and years. Pottangi ranked first in location means (15.49 t ha⁻¹) and Mizoram showed relatively lower yields (6.55 t ha⁻¹), suggesting environmental factors like soil and climatic conditions and disease pressure may have impacted productivity in these regions.

Variation and Stability:

GGE biplot illustrates the fresh rhizome yield performance of 10 ginger genotypes across different environments. The two principal components (PC1 and PC2) together account for 80.68% of the total variation, providing a comprehensive view of genotype-by-environment interactions.

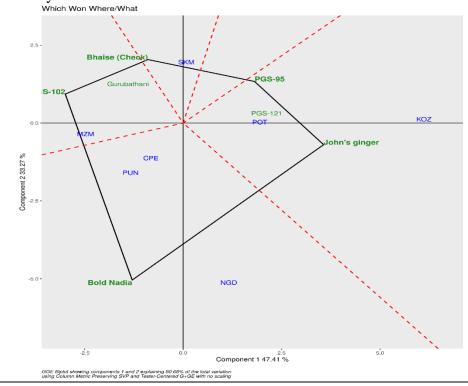
A. 'Which-won-where' Biplot: The red lines in the biplot divide the plot into five distinct sectors, each representing a specific environment or group of similar environments. The vertex genotype in each sector is considered the "winning genotype" for that particular environment, indicating superior performance and suggesting specific environmental preferences or sensitivities for those genotypes. Starting from top to clock-wise direction,

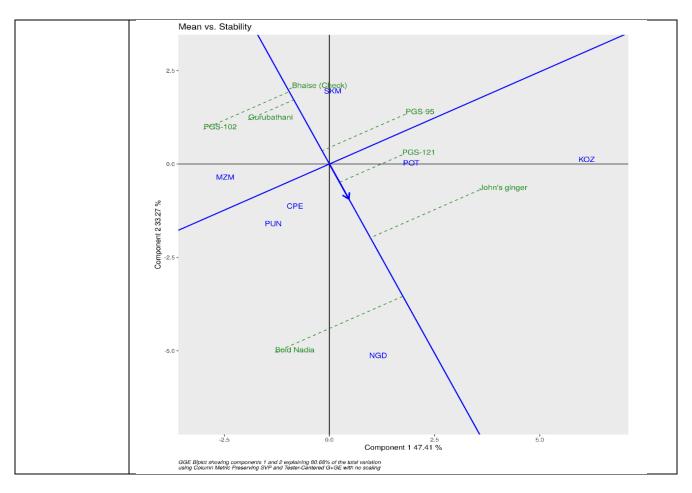
- 1. Sector I: Bhiase performed best, specifically in the Sikkim environment.
- 2. Sector II: This sector did not include any genotypes or environments, indicating a lack of significant interactions or data here.
- 3. Sector III: Kozhikode and Pottangi environments are located in this sector, with John's Ginger and PGS-95 identified as the winning genotypes.
- 4. Sector IV: Bold Nadia emerged as the top performer in this sector, excelling in environments like Nagaland, Pundibari, and Chintapalle. These genotypes demonstrated broader adaptability across different environments.

5. Sector V: This sector included the Mizoram environment, where PGS-102 outperformed other genotypes, showing superior performance in this setting. This biplot highlights the environmental specificity of certain genotypes, with some genotypes like Bold Nadia displaying broader adaptability, while others like PGS-

102 exhibit more targeted performance.

B. Mean vs Stability Biplot:


A GGE biplot is a powerful tool for visualizing genotype-environment interactions (GEI), particularly focusing on mean performance and stability biplot. This specific biplot includes two key lines: (i) the AEC (Average Environment Coordinate) abscissa (horizontal) and (ii) the ordinate (vertical).


The AEC abscissa (horizontal line) ranks genotypes by their mean performance, with the arrow pointing towards increasing values. Genotypes positioned further along this line, in the direction of the arrow, indicate higher mean performance (i.e., better yield) across environments. Conversely, genotypes located further from the arrow in opposite direction have lower mean performance.

In the figure, Bold Nadia, followed by John's Ginger, are positioned furthest along the AEC abscissa in the direction of the arrow, making them the highest-yielding genotypes. Other genotypes, positioned further back opposite to arrow, suggest lower yielding types.

The AEC ordinate (vertical line) represents stability. Genotypes close to the horizontal AEC abscissa, with little or no projection from the vertical axis, are considered more stable. The greater the projection from the horizontal axis, the less stable the genotype is, indicating greater sensitivity to environmental changes. Bhiase (Check) and Gurbathani are very close to the AEC abscissa with minimal projection, indicating high stability.

However, when considering both yield and stability, John's Ginger shows a narrower projection from the AEC ordinate compared to Bold Nadia, indicating relatively more stable performance than Bold Nadia. Although Bold Nadia exhibits superior fresh rhizome yield, John's Ginger offers a better balance of high yield and stability.

TURMERIC

Project Code	TUR/CI/1.1	Project Title	Germplasm collection, characterization		
110ject coue		110,000 11010	evaluation and conservation		
Centres	Barapani, Coimba	tore, Dholi, Gu	untur, Kammarpally, Kumarganj, Pasighat		
	Pottangi, Pundibar	i, Raigarh, Solar	n		
Date of start	1999 Date of clo	sure/ duration	Long Term		
Work done/achie	vements during 2023	-24 (centre-wise	e)		
Barapani	Twenty nine (29)	accessions of to	turmeric were evaluated at ICAR Research		
	complex for NEH	Region Umiam, I	Meghalaya. Among the accessions, the plan		
	height ranged fron	n 84.07cm-108.1	10. The highest plant height was recorded in		
	IC-586753 (108.1)	0 cm) followed	l by IC-586780 (104.30cm). Likewise, lea		
	O \ ,	length (53.40 cm) and width (17.57cm) was highest in IC-586753 and lowest in			
	,	IC-58770 (39.17and 12.57) respectively. Moreover, IC-586753 also recorded			
	_	the highest no. of leaves (16.17). However, the no. of tillers was found highest			
	in IC-586768 (5.17). As far as yield is concerned, the high yielding accessions				
	were IC-586767 (375.78g plant ⁻¹) followed by IC-586776 (368.35). Likewise,				
	yield t ha ⁻¹ was also found highest in IC-586767 (15.77t), while highest				
	curcumin content was recorded in IC-586777 (5.86%). Dry matter content				
	(22.3%) was found				
Coimbatore	_	* *	ned in the germplasm were raised in the field		
	condition during 2023 - 2024. A set of 200 genotypes were evaluated for fresh				
			me yield per plant, dry recovery per cent and		
			ng the 200 genotypes evaluated, CL 180		
	recorded the highe	st fresh rhizome	e yield per clump (565.60 g) followed by CI		

Dholi	171 (558.50 g), CL 161 (545.50 g) CL 99 (542.60 g) and CL 229 (512.25 g). Dry recovery per cent among the 200 genotypes was highly significant. The mean value for dry recovery per cent was 24.00. The highest dry recovery was recorded in CL 9 (21.95 %) followed by CL 5 (21.54 %), CL 209 (21.50 %), CL 258 (20.80 %) and CL 154 (20.56 %). The total curcuminoid content (ASTA) among the genotypes also varied significantly. The highest total curcuminoid content was registered in CL 272 (5.87). This was followed by CL 253 (5.73 %), CL 257 (5.17 %), CL 242 (5.11 %) and CL 258 (5.09 %). Among 68+2 check turmeric accessions evaluated, accession RH-432 recorded highest yield of (54.82 tha ⁻¹) followed by RH-448 (54.69 tha ⁻¹) and RH-435 (52.23 tha ⁻¹) as compared to check variety, Rajendra Sonali (47.73 tha ⁻¹).
Guntur	During 2023-24, One hundred and two turmeric germplasm lines evaluated LTS-68 (1092 g/clump), LTS-88 (804.8 g/clump), LTS-87 (798.1 g/clump), LTS-81 (787 g/clump) and LTS-34 (741.9 g/clump) recorded significantly higher fresh clump weight over the best checks BSR-2 (569.2 g/clump) and Mydukuru (526.1 g/clump).
Kammarapally	In this experiment 318 germplasm lines were evaluated for growth & yield characters using DUS description. Among these lines 50 top yielders were selected for further estimation of dry recovery and cucumin content. Among the selected 50 lines PTS-16 has been recorded maximum yield of 42.79 t ha ⁻¹ followed by No-95-02 second highest yield of (41.59 t/h) compare to local check Duggirala Red and national check IISR Prathibha. Maximum dry recovery (29.33 %) was observed in JTS-13 followed by JTS-329 (28.5 %)
Kumarganj	A total of 186 collected germplasm were maintained and evaluated at the station. Out of 33 early maturing germplasm NDH-74 (290 g plant ⁻¹), NDH-88 (282 g plant ⁻¹) and NDH-173 (274 g plant ⁻¹) gave higher yield. While among 116 medium maturing germplasm NDH-14 (272 g plant ⁻¹), NDH-135 (270 g plant ⁻¹) and NDH-147 (275g plant ⁻¹) gave higher yield. Out of 37 late maturing germplasm NDH-11 (280 g plant ⁻¹), NDH-56 (265 g plant ⁻¹) and NDH-93 (270g plant ⁻¹) performed well.
Pasighat	Among the 75 diverse collections from the NE region evaluated, the maximum fresh rhizome yield per plant and estimated rhizome yield per hectare were recorded in genotype CHFT-36 (270.06 g, 28.27 t ha ⁻¹) which was statistically at par with CHFT-8 (261.05 g, 28.05 t ha ⁻¹) and CHFT-56 (256.02 g, 27.66 t ha ⁻¹).
Pottangi	Among 168 turmeric accessions evaluated in 2023-24 at HARS, Pottangi. Out of 168 <i>Curcuma longa</i> accessions 75 entries yielded more than 5Kg 3m ⁻² plot and 25 entries with more than 10 Kg 3m ⁻² fresh rhizome yield. The range in fresh rhizome yield per plot in C. longa was varied from 2.2 Kg/3 m2 (TU-4) to 22.9 Kg 3m ⁻² (PTS-3) with the mean of 6.8 Kg 3m ⁻² among tested germplasms. High yielder was PTS-3(22.9 Kg 3m ⁻²), PTS-47 (21.4 Kg 3m ⁻²), Kuchipudi (21.0 Kg 3m ⁻²), The projected yield was ranged from 4.88 t ha ⁻¹ (TU-4)-50.8 t ha ⁻¹ (PTS-3) with the mean of 15.0 t ha ⁻¹ during 2023-24.
Pundibari	Out of 181 genotypes of turmeric, thirty-two (32) genotypes recorded higher rhizome yield above 35 t ha ⁻¹ ; 15 genotypes showed rhizome yield between 30 t ha ⁻¹ to 35 t ha ⁻¹ and 17 genotypes recorded rhizome yield between 25 t ha ⁻¹ to 30 t ha ⁻¹ . In respect to disease resistance 62 germplasm showed low leaf botch disease incidence (PDI 0.00 to 10) i.e. they are highly resistance to leaf blotch and 65 germplasm showed low leaf spot (PDI 0.00 to 10) disease incidence i.e. they are highly resistance to leaf spot. Two new turmeric genotypes were

	collected in the year 2023-24 from Malda and Kalimpong distrcits at Pundibari
	Centre. These lines planted in the year 2024-25 for characterization.
Raigarh	Total 114 (97 Curcuma longa, 7 Curcuma amada, 5 C. caesia germplasm and
	5 released varieties) of Turmeric maintained at CARS, Raigarh during kharif
	2023. Evaluation of Plant Genetic Resources of turmeric Curcuma longa
	revealed significant diversity among all the genotypes for rhizome yield and
	yield attributing traits. The highest rhizome yields recorded by IT 50 (58.3 t ha
	¹) followed by IG-55 (49.7 t ha ⁻¹), IT 51 (46.3 t ha ⁻¹) and IG-39 (48.7 t ha ⁻¹)
	over the promising checks CG RH 3 (29.2 t ha ⁻¹), Prathibha (24.5), CGHaldi-2
	(22.5 t ha ⁻¹) and BSR 2 (17.8).
	Maintenance of Nucleus seeds of Turmeric: Total 200,300 and 500 SPS of three
	varieties of turmeric viz; Chhattisgarh Haldi-1, Chhattisgarh Haldi-2 and CG
	Raigarh Haldi-3 respectively maintained in 4-meter row length. So total 1000
	SPS of Turmeric varieties maintained during <i>Kharif</i> 2023.Expected nucleus
	seeds of 2 quntal, 5 quintal and 10 quantal from receptively.
	Breeder Seeds of Turmeric: Planting of Breeder seeds of turmeric varieties CG
	Haldi-2 and CG Raigarh Haldi-3 did at farm of CARS, Raigarh during Kharif
	2024. Expected fresh rhizome yield of 1 ton of CG Haldi-2 and 2 ton of CG
	Raigarh Haldi-3 from Breeder seeds planting <i>Kharif</i> 2024.
Solan	Among the forty genotypes evaluated, the genotype ST ₁ 9-27 recorded the
	highest fresh rhizome yield of 393.1 g plant ⁻¹ with 3.62% curcumin content.

			<u></u>			
Project Code	TUR/CI/2.8	Project Title	CVT on high yield and high curcumin			
Centres	Coimbatore,	Guntur, Kamma	arpally, Kanke, Kozhikode, Navsari, Pasighat,			
	Pottangi, Raiga	tangi, Raigarh				
Date of start	2020	Date of closure	re/ duration 3yr (2023-24)			
Experimental details		No. of treatmen	nts/genotypes:11			
		1. RRN1 ((IISR)			
		2. CL 258	S (TNAU)			
		3. CL 272	(TNAU)			
		4. PTS 47	(Pottangi)			
		5. PTS 6 ((Pottangi)			
		6. IT 26 (I	Raigarh)			
		7. NVST	7. NVST 56 (Navsari)			
		8. NVST 84 (Navsari)				
		9. IISR Pratibha (control)				
		10. IISR Pr	ragati (control)			
			tamber (control)			
		Replications-3, Design: RBD. Plot size/spacing: 3×1 m, spacing-				
		25x 25 cm				
Observation Rec	corded	1. Sprouting p				
			lation at 50 DAS			
		3. Plant heigh				
		4. Number of tillers per clump				
		5. Fresh weight of clump (g)				
		6. Fresh rhizome yield ha ⁻¹ (t)				
		7. Dry rhizome yield ha ⁻¹ (t)				
		8. Dry recovery (%)				

- 9. Curcumin content (%)
- 10. Oleoresin (%)
- 11. Essential oil (%)
- 12. Disease (rhizome rot) and pest (shoot borer) incidence, if any

Work done/achievements during 2023-24 (centre-wise)

PC Unit: Pooled analysis report

This trial assesses different turmeric genotypes for fresh rhizome yield along with curcumin content across multiple locations and years (2020–2023), aiming to identify varieties harbouring high yield as well as high curcumin content tailored for industrial purpose. Here are the key observations:

Top Performers for yield & curcumin content analysed individually:

- **NVST 56** emerged as the highest-yielding genotype with a grand mean of **28.7** t ha⁻¹, ranking 1st with a positive index of competition with best check, IISR Pragati (% IOC) of **0.1%** giving the top three performance in **9** out of **26** experiments. Potential yield of NVST 56 is the highest at **73.6** t ha⁻¹ recorded in 2021 at Coimbatore (CBE-21). **IISR Pragati**, national check used was the second-best performer with a yield of **28.2** t ha⁻¹.
- **NVST 56** has also shown the highest dry rhizome yield performance at **20.6** t ha⁻¹.
- Curcumin content varied significantly across different locations and year.
 Among the entries, IISR Pratibha (Check) recorded the highest mean curcumin content at 3.990%, securing the top position followed by CL 272, which ranked second with a mean of 3.845%.

Top Performers for simultaneous selection on yield & high curcumin content:

The main aim of this coordinated varietal trial is to identify turmeric genotypes that tailored to habour high yield along with high curcumin content, particularly focusing on industrial utility purpose.

Traits Considered for Selection:

Fresh Rhizome Yield per hectare (t ha⁻¹): The primary indicator of productivity. (FRY)

Curcumin Content (%): Measures curcumin content (Cur).

Weightage Assigned:

- Rhizome Rot and Bacterial Wilt are given full weightage (-1) in negative direction due to the goal of enhancing disease resistance.
- Fresh Rhizome Yield is considered with a positive selection direction, aiming for higher yields, with full weight of 1.

Selection Method: At a selection intensity of 10%, selecting for FRY led to an increase of 0.159 t ha⁻¹ (0.685% improvement). For Curcumin Content, however, there was a negative differential of -0.135 % (-3.95%), suggesting a slight decrease in curcumin content when selecting for higher yield.

Multi-trait Genotype-Ideotype Distance Index (MGIDI) was used for simultaneous selection. The MGIDI index identifies genotypes that are close to the ideotype (ideal genotype). MGIDI index ranks the genotypes based on their performance in terms of Fresh Rhizome Yield (FRY) and Curcumin Content (Cur). Here is the order of the genotypes based on their MGIDI score, with lower scores indicating better performance in balancing both traits

	Gene	otypes and MG	IDI Scor	es:
	Sl.			
	No	Genotype	MGIDI	PTS 47 IISR Pratibha (Check)
	1	PTS 47	0.195	
	2	IISR Pragati	0.258	0.5 IISR Pragati (Chash
	3	IT 26	0.274	x pui
	4	PTS 6	0.326	Istanoo
	5	NVST 84	0.361	80 1.5 IT 26 RRN1
	6	CIM	0.578	Napul acutes of the part of th
	0	Pitamber		genot/i
	7	CL 258	1.04	PTS 6
	8	CL 272	1.09	Mut
	9	RRN1	1.71	NVST 84 CL 258
	10	NVST 56	1.75	CIM Pitamber (Check)
	11	IISR Pratibha	1.76	
				Nonselected Selected
	Infer	ences from MG	IDI Index	:
	•	Top-perform	ning geno	otypes like PTS 47 have very low MGIDI values,
		got selected	while exe	rting 10% selection intensity suggesting they are
		closer to the	ideal geno	otype. These are the most desirable selections for
		both high yie	eld and cu	rcumin traits.
	Conc	clusion:		
	The s	selection of geno	otypes usir	ng the MGIDI index shows a balance between disease
		_		5 47 was the most promising genotypes, showing the
				d balance between disease curcumin content and yield.
				ss slightly reduced yield, the substantial gains in
				notypes are well-suited for industrial useage.
Coimbatore	CVT	trial on high y	ield and l	nigh curcumin content eight entries were evaluated
	along	g with four chec	k. Among	the entries PTS6 recorded a greater number of tillers
	(7.13	and maximui	n plant h	eight (100.26cm). Fresh rhizome yield per hectare
	diffe	red significantly	among tl	ne genotypes which ranged from 32.87 t ha -1 (IT 26)
				curing per cent ranged from 5.962 (IISR Pragathi) to
				the quality parameters <i>viz.</i> , curcumin, essential oil
				genotypes, PTS 6 recorded the highest curcumin
				nt (8.47 %). However, PTS 6 recorded the lowest
	`	ntial oil content		
Guntur				n Turmeric (High yield and curcumin), CL-272 (35.7
				34.3 t ha ⁻¹), recorded significantly higher fresh yield
		,	,	thibha (30.7 t ha^{-1}).
Kammarpally				n varieties were evaluated, among the lines, T ₃ (IT-
Tanimarpany				(36.67 t ha ⁻¹) followed by T ₃ (PTS-47) (23.33 t ha ⁻¹
			•	ol. The dry recovery percent maximum in T ₃ (IT-26)
	-	(8 %) followed by		
Kanke				notypes of Turmeric tested at Kanke centre. The
Kanke		-	_	ngi) was observed as 27.353 t ha ⁻¹ followed by IT 26
	_	-		= -
	_			7 t ha ⁻¹ . Similarly, PTS 6 (Pottangi), CL 258, NVST
			-	elded 26.063t ha ⁻¹ , 25.923t ha ⁻¹ , 24.893t ha ⁻¹ and
			•	omparison with IISR Pratibha (24.387 t ha ⁻¹ and IISR
	_			ols. Yield attributing characters also reflected similar
		supporting the	•	
Kozhikode	Eigh	t entries were e	valuated	for yield and curcumioids along with three checks

	during 2023-24. Significantly high fresh yield was recorded in PTS 47 (42.98 t ha
	¹) and IISR Pragati (38.95 t ha ⁻¹).
Navsari	Among the ten genotypes along with two checks evaluated at Navsari, NVST-56
	(47.4 t ha ⁻¹) and NVST-84 (40.6 t ha ⁻¹) were found significantly superior in
	performance for green rhizome yield over both the national checks IISR-Pragati
	(32.3 t ha ⁻¹) and IISR-Pratibha (30.1 t ha ⁻¹). NVST-56 also recorded significantly
	superior values for other related yield-attributing characters.
Pasighat	Results showed significant difference for all parameters. Highest sprouting
	percentage (96.67 %) and highest plant population (29.00) was recorded in IISR
	Pragati and lowest in CL258 (81.11, 24.33, respectively). Highest plant height
	(97.27 cm) was recorded in IISR Pragati and lowest in NVST84 (58.41 cm).
	Maximum number of tillers/clump (2.8) was observed in CIM Pitamber and lowest
	in CL272 (1.67). As far as yield is concerned, highest yield/clump (135.10 g) and
	yield (13.40 t ha ⁻¹) was recorded in IISR Pragati followed by CIM Pitamber
	(120.38 g, 11.73 t ha ⁻¹ , respectively) compared to the lowest in CL258 (61.53 g,
	6.23 t ha ⁻¹ , respectively). Highest curcumin content (4.39%) was recorded in IISR
	Pratibha followed by CL272 (3.92%) compared to the lowest in NVST84 (1.06%)
Pottangi	It was revealed from the analyzed data of 2021-22, 2022-23 and 2023-24 that the
	entry PTS-47 (16.0 t ha ⁻¹) was the top yielder followed by PTS-6(15.7 t ha ⁻¹) and
	RRN1(15.3t ha ⁻¹). The dry rhizome yield Roma (4.2t ha ⁻¹) was highest followed
	by PTS-47(3.6 t ha ⁻¹), PTS-6(3.5t ha ⁻¹) and RRN1(3.4 t ha ⁻¹).
Raigarh	Evaluation of turmeric genotypes for high yield and high curcumin contents
	revealed that for rhizome yield IT 26 (24 t ha ⁻¹) recorded highest rhizome yield
	followed by RRN-1 (22.2 t ha ⁻¹) and PTS 47 (19 t ha ⁻¹) over the check IISR Pragati
	$(18.8 \text{ t ha}^{-1}).$

Project Code	TUR/CI/2.9	Project Title	CVT on light yellow co	lour turmeric for				
		speciality market						
Centres	Coimbatore, C	untur, Kammarpally, Kanke, Kozhikode, Pasighat, Pottangi						
Date of start	2020	Date of closure/ duration 3yr (2023-24)						
Experimental de	Experimental details		ts/genotypes: 11					
		1. RRN 3 (II	SR)					
		2. RRN 4 (II	SR)					
		3. RRN 2 (II	SR)					
		4. Acc 849 (ISR)					
		5. Acc 1545	ISR)					
		6. CL 223 (TNAU)						
		7. CL 21 (TNAU)						
		8. PTS 50 (Pottangi)						
		9. KPS 611 (Kammarpally)						
		10. IISR Prathiba (control)						
		11. Mydukur (control)						
		Replications-3, Design: RBD. Plot size/spacing: 3×1 m, spacing-						
		25x 25 cm						
Observation Rec	corded	Sprouting percentage						
		2. Plant population at 50 DAS						
		3. Plant height (cm)						
		4. Number of tillers per clump						
		5. Fresh weight of clump (g)						
		6. Fresh rhizome yield per ha (t)						

- 7. Dry rhizome yield per ha (t)
- 8. Dry recovery (%)
- 9. Curcumin content (%)
- 10. Oleoresin (%)
- 11. Essential oil (%)
- 12. Disease (rhizome rot) and pest (shoot borer) incidence, if any

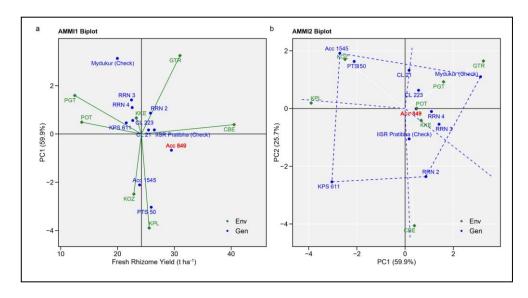
Work done/achievements during 2023-24 (centre-wise)

PC Unit: Pooled analysis report

The experiment evaluated light coloured turmeric genotypes across multiple years and locations to assess their performance for fresh rhizome yield, targeting suitability for industrial utility for specific markets. Here are the key insights:

Performance Across Genotypes:

Acc 849 showed the highest mean yield (**30.1** t ha⁻¹), with significant yield advantages across most years, demonstrating superior performance overall. Acc 849 consistently outperforms national check, IISR Pratibha with up to 12.5% higher yields in 2021 and an overall increase of **10.9%** with Acc 849 appearing **in**


14 out of 20 top-three instances.

Environmental Influence:

The environment influenced the yield performance, with variations across locations and years. **Coimbatore** ranked first in location means (40.5 t ha⁻¹) and **Pasighat** showed relatively lower yields (12.5 t ha⁻¹), suggesting environmental factors like soil and climatic conditions and disease pressure may have impacted productivity in these regions.

Variation and Stability:

AMMI biplots illustrates the fresh rhizome yield performance of 11 turmeric entries across different environments. The two principal components (PC1 and PC2) together account for **85.6%** of the total variation, providing a comprehensive view of genotype-by-environment interactions.

A. AMMI1 Biplot: The x-axis represents the main effect (Fresh Rhizome Yield in t ha⁻¹) with increasing trend towards RHS, while the y-axis shows the first principal component (PC1) of the interaction. Genotypes (blue dots) and environments (green dots) that are close to the horizontal line (PC1 = 0) contribute less to the genotype-environment interaction, indicating more stability across environments. Here Acc 849 tend to placed on extream right compared to thers and lies near to PC1 = 0 regarded as high yielding and stable

	one, B. AMMI2 Biplot: The x-axis represents the first principal component (PC1) of the interaction, while the y-axis shows the second principal component (PC1)
	of the interaction. Genotypes (blue dots) and environments (green dots) that are close to the horizontal line (PC1 = 0) and vertical line (PC2 =0) ie near to origin will contribute less to the genotype-environment interaction, indicating more stability across environments. Here <i>Acc</i> 849 tend to placed near to origin
	compared to others indicating the stable nature.
Coimbatore	Among the nine entries evaluated along with three checks for light yellow colour rhizome, the highest fresh rhizome weight was recorded in RRN2 (484.56g) followed by PTS 50(480.30 g). Evaluation turmeric genotypes for curcumin, oleoresin and essential content revealed that ACC 849 registered
	the highest curcumin content (2.99 %) which was higher than national check IISR Prathiba (2.26%) and local check CO2 (2.57 %) but slightly lesser than Mydukur (3.02%). However, the oleoresin and essential oil content in ACC
	849 was 7.17 % and 4.00 % respectively. Among the genotypes, CL 223 registered the highest oleoresin content of 7.80 % followed by KPS 11 (7.60 %) and PTS 50 (7.54 %).
Guntur	Nine entries along with two checks were evaluated in RBD. In Coordinated Varietal trial on Turmeric (Light yellow & specialty market), CL-21 (39.9 t ha ⁻¹), recorded higher fresh yield per ha than the check Mydukur (36.0 t ha ⁻¹).
Kammarpally	In this trial 11 lines entries of light yellow color were evaluated, among the lines T ₃ -CL 223 recorded maximum yield (20.07 t ha ⁻¹) followed by T ₃ -ACC-1545 (18.30 t ha ⁻¹) when compare to control. Maximum dry recovery % was observed in T ₃ -CL 223 (30.0 %) followed by T8 (29.33)
Kanke	Out of 12 genotypes yield were found to be statistically significant. Yields fresh rhizomes of ACC 849 (IISR), RRN 4 (IISR), RRN 2(IISR) RRN 3 (IISR), KPS 611 (Kammarpalli) and PTS 50 (Pottangi) yielded 24.567 t ha ⁻¹ , 24.423 t ha ⁻¹ , 24.420 t ha ⁻¹ , 24.007 t ha ⁻¹ , 23.84637 t ha ⁻¹ and 23.653 t ha ⁻¹ respectively as compared with IISR Pratibha as control (24.950 t ha ⁻¹). These were at par to each other. The yield attributing characters were found to be in similar trend supporting the yield data.
Kozhikode	Nine entries were evaluated for yield along with two checks (one national and one local) during 2023-2024. Maximum fresh yield was recorded in Acc 849 (34.94 t ha -1) followed by Acc. 1545(33.53 t ha -1), which were on par.
Pasighat	For, CVT on on light yellow colour Turmeric for the speciality market, 11 genotypes were evaluated and the results showed significant difference for all parameters. Highest sprouting percentage (95.56 %) and highest plant population (28.67) was recorded in Acc 849 and lowest in RRN 3 (82.22, 24.67, respectively). Highest plant height (90.05 cm) was recorded in Mydukur and lowest in PTS 50 (63.50 cm). Maximum number of tillers/clump (2.60) was observed in Mydukur and lowest in KPS 611 (1.87). As far as yield is concerned, highest yield/clump (141.12 g) and yield (14.22 t ha ⁻¹) was recorded in Mydukur followed by Acc 849 (134.33 g, 13.47 t ha ⁻¹ , respectively) compared to the lowest in PTS 50 (77.00 g, 7.71 t ha ⁻¹ , respectively). Highest curcumin content (4.66%) was recorded in IISR Pragati followed by RRN 4 (3.79%) compared to the lowest in KPS 611 (2.01%).
Pottangi	It was revealed from the analyzed data of 2021-22, 2022-23 and 2023-24 that that the entry Acc-849(16.7t ha ⁻¹) was the top yielder with the yield advantages of 18.4 % than the national check variety Pratibha (14.1 t ha ⁻¹) followed by PTS-50(15.5

t ha ⁻¹) and RRN3(14.1t ha ⁻¹). The dry rhizome yield of Acc-849(3.6t ha ⁻¹) was the
top yielder with the yield advantages of 18.9% than Pratibha (3.0t ha ⁻¹)

Project Code	TUR/CI/2.11	Project Title CVT on black turmeric Curcuma caesia				
Centres	Barapani, Coi	mbatore, Kozhikode, Kumarganj, Mizoram, Navsari, Pottangi,				
	Pundibari					
Date of start	2022	Date of closure/ duration 2023-2025 (3years)				
Experimental de	tails	Entries:				
		1. NBT 1 (Navsari)				
		2. NBT 2 (Navsari)				
		3. BT 162 (Pundibari)				
		4. NDHCc1 (Kumarganj)				
		5. Acc. 292 (IISR)				
		6. Acc.751 (IISR)				
		7. PCC-1 (Pottangi)				
Observation reco	orded	1. Sprouting percentage				
		2. Plant population at 50 DAS				
		3. Plant height (cm)				
		4. Number of tillers per clump				
		5. Fresh weight of clump (g)				
		6. Fresh rhizome yield per ha (t)				
		7. Dry rhizome yield per ha (t)				
		8. Dry recovery (%)				
	9. Oleoresin (%)					
10. Essential oil (%)						
11. Disease (rhizome rot) and pest (shoot borer) incidence,						
Work done/achievements during 2023-24 (centre-wise)						
All Centres	After confirmi	ng the botanic identity of entries to Curcuma caeisa the trial was				
	initated during	the planting season 2024-24 at all centre.				

TREE SPICES

Project Code	TSP/CI/1.1	Project Title	Germplasm	collection,	characterization,	
		Ü	evaluation a	nd conservation of	clove, nutmeg and	
			cinnamon			
Centres	Dapoli, Pechipa	arai				
Date of start		Date of closur	e/ duration	Long term		
Work done/achie	evements during	g 2023-24 (centi	re-wise)			
Dapoli	Nutmeg: Amor	ng the different g	germplasm co	llections of nutmeg	g planted during the	
	year 1996–97,	eighteen promis	ing genotypes	have been identifie	ed. The highest nut	
	yield per tree (1840) was recorded by accession, DBSKKVMF 65. The maximum					
	fresh nut weigh	fresh nut weight (12.40 g), dry nut weight (8.40 g), fresh mace weight (8.56 g) and				
	dry mace weight (1.90 g) was recorded in genotype DBSKKVMF 9772.					
	Additionally, DBSKKVMF 9772 recorded maximum dry nut yield/tree (12.62 kg)					
	and dry mace yield (2.85 kg) followed by genotype DBSKKV 65 which recorded					
	dry nut yield/tr	ree (11.41 kg) as	nd dry mace	yield (1.93 kg). Co	onsidering the fruit	
		yield parameters, the genotype DBSKKVMF 9772 was found promising genotype				
	among evaluated entries.					
	Clove: Among	the germplasm	of clove plan	nted during 1996-9	97, four promising	
					n to 6.21 m., girth	
	0 1				No flowering was	

Pechiparai DBSKKVSA-1 was found superior to other genotypes. Clove:Twenty four accessions are maintained in clove. Moropholo characters, yield attributing traits are being evaluated to identify prom	
characters, yield attributing traits are being evaluated to identify prom	
	cina
	sing
accessions. The maximum height was observed in SA-1 and the tree height	was
13.92 m. This was followed by SA-3(12.96m). The lowest tree height was	
in SA-23 where the tree height was 5.50 m. The accession SA-3 was signific	
superior to other accessions and recorded highest stem girth (52.46 cm) comp	ared
with local check (42.24 cm). The accession SA-3 recorded the highest leaf leaf	ngth
(12.93 cm), leaf breadth (7.75 cm), number of branches (21.26 nos). Amon	g the
24 accessions, SA3 had been identified as the best performer as the dry bud	ield
is 1.97 kg/tree while the local check recorded 0.66 kg/tree	
Nutmeg: In Nutmeg, 24 accessions are maintained. MF-1 recorded maximum	tree
height (12.77 m) and stem girth (67.12 cm). The maximum leaf length	was
recorded in MF-4 the value being 20.61 cm, leaf breath (8.24 cm). Among the	e 24
accessions, MF-4 recorded maximum number of fruits 713.24 fruits /tree an	the
single fruit weight was also highest in MF-4 (58.73 g), and mace yield reco	rded
per tree was 1431.30g/tree. Local check recorded 525.34 fruits /tree, single	fruit
weight (45.27 g) and mace yield (914.32 g/tree).	
Cinnamon: Morphological characters and yield attributing traits are b	
evaluated to identify promising accessions. Among twelve accessions, of	CV-5
recorded maximum tree height one year after coppicing (6.53 m), stem girth (1	
cm) number of rejuvenation shoots (43.34 nos.) against local check with	olant
height (5.65 m) and rejuvenation shoots (23.24 Nos.). The highest dry bark	yield
was recorded in CV-5(709 g/tree) and lowest in CV-3 with 249g/tree.	

Project Code	TSP/CI/1.2	Project Title		of unique germplasm in tree spices	
			(Nutmeg)		
Centres	Dapoli, Pechip	iparai			
Date of start	2005	Date of closure	Date of closure/ duration Long term		
Experimental de	Experimental details				
		1. Yellow	mace type		
		2. Red 12	month type		
		3. Seedles	S		
		4. Nova			
	5. Monoecious bunch bearing				
		6. Acc 1			
		7. Acc 3			
		8. Acc 5			
		9. Acc 8			
		10. Acc. 9			
		11. Acc.12			
		12. Acc. 13			
		13. Acc. 20			
		14. Acc. 23			
		15. IISR Ke	eralasree		
	16. IISR Viswashree				
Work done/achie	evements durin	g 2023-24 (centr	e-wise)		
Dapoli	Among the dif	mong the different genotype of nutmeg the plant height varied from 2.1 m to 6.14			
	m, number of branches 52 to 82 and spread of tree 1.82 m to 3.42 m. The maximum				
	plant height (6.14 m), average number of branches (82) and maximum plant spread				

	(3.42 m) was observed in genotype- Yellow mace type. Also, this genotype gave						
	more number of nuts (126) per tree as compared to other genotypes.						
Pechiparai	Among the various unique nutmegs, the maximum plant height was recorded in						
	Visvashree (7.27 m), maximum branches (24.44 nos.) Whereas Acc-17 recorded						
	lowest plant height (4.24 m) and branches (13.32 Nos.). Viswasree has recorded						
	highest number of fruits (44.12), single fruit weight (48.46 g) and highest mace						
	yield (74.58 g/ tree), local check has recorded minimum no of fruits (22), single						
	fruit weight (34.38 g) and dry mace yield (37 g/tree).						

Project Code	TSP/CI/2.4	Project Title	Coordinate	d Varietal Trial on farmers varieties of	
110geet code	1817 82 2		nutmeg	# (W. 1 - W. 1	
Centres	Dapoli, Pechip	arai, Thrissur			
Date of start	2016	Date of closur	e/ duration	Long term	
Experimental details		Genotypes			
			hanam Jathy		
		2. Kochukudy			
			amakkan Jat	•	
		-	ed nutmeg va	ariety	
		5. Local c			
W1-1/1-:		6. Nationa			
Work done/achie		_		eta indicatos significant difference - f	
Dapoli				ata indicates significant differences for hukudy recorded highest plant height	
		C	7 I	ndha (Local check) with 3.46 m. The	
				maximum branches (68.44), while	
	Kochukudy.	ant spread (3.78 m) and highest yield (78 nuts tree ⁻¹) was recorded in			
Pechiparai	•	mers varieties in	nproved Nut	meg variety recorded maximum plant	
				22.37 Nos.). Minimum plant height of	
	· .	<i>'</i>	`	recorded in Local check.	
Thrissur	Trial has been	laid out with fou	r farmer varie	eties, one local check and one national	
	check. The pla	nts are of seven-	year-old and	their morphological performance was	
		al is under progress. All the accessions have started flowering and			
				were recorded. Among the varieties	
				ignificant growth and yield attributes.	
Project Code	TSP/CI/2.5	Project Title		d Varietal Trial on nutmeg-2023	
G .	D 11 17 1 1		Series		
Centres	Dapoli, Kozhi	kode, Pechiparai,	Thrissur		
Year of Start	2025	Date of closur	e/ duration	Long term	
Experimental de	etails	Genotypes			
		1. DBSKKVMF-65 (Dapoli)			
			2. DBSKKVMF-66 (Dapoli)		
			3. MF-4 (Pechiparai)		
		4. MF-6 (Pechiparai)			
		5. Accession 15 (KAU, Thrissur)			
			6. Accession 43 (KAU, Thrissur)		
			7. Acc 590 (IISR)		
		8. Acc 562	,		
		0. 1100 302	(11011)		

	9. Acc 530 (IISR)	
	10. Konkan Sanyukta (Check)*	
	11. IISR Keralashree (Check)*	
Work done/acl	nievements during 2023-24 (centre-wise)	
PC Unit	Conducted two group meetings to evaluate the progress of planting material	
	production at different centres	
Dapoli	Planting materials production is under way	
Kozhikode	Planting materials production is under way	
Pechiparai	Planting materials production is under way	
Thrissur	Thrissur is ready with planting material production	

Project Code	TSP/CI/5.1	Project Title	Evaluation of nutmeg genotypes		
Centres	Thrissur	•			
Date of start	2018	Date of closure/	duration	Long term	
Experimental details		Genotypes			
		1. Acc.1			
		2. Acc.5			
		3. Acc.12			
		4. Acc.13			
		5. Acc.14			
		6. Acc.17			
		7. Acc.20			
		8. Acc.21			
		9. Acc.23			
		10. Acc.28			
Work done/achi	evements durir	ng 2023-24 (centre-	-wise)		
Thrissur	Budded plants	of all the genotype	es were show	ring significant growth. Plants have	
	established we	ell in the field. All t	he accessions	s have started flowering and fruiting	
	(except Acc.2)	8) and their morpho	ological obse	rvations were recorded. Among the	
varieties Acce		ession 5 was observed to be significantly superior in growth as well			
as mace and n		ut weight. Accession	on 23 was fou	and to be higher in number of fruits	
	per tree.				

CORIANDER

Project Code	COR/CI/1.1	Project Title	Germplasm	collection,	description,
			characteriza	tion, evaluation,	conservation and
			screening ag	gainst diseases	
Centres	Coimbatore, D	holi, Guntur, His	sar, Jagudan,	Jobner, Kumargan	j, Raigarh
Date of start	1975	Date of closur	e/ duration	Long term	
Work done/achie	evements during	g 2023-24 (centr	re-wise)		
Coimbatore	A total of 276 genotypes maintained in the germplasm at Coimbatore were				
	raised in field condition during the rabi season (Dec 2022 - March 2023).				
	Among the 276 genotypes, the best performing genotypes of the previous				
	year (2021-2022) in terms of yield were selected and evaluated for various				
	parameters <i>viz.</i> , growth & yield parameters and powdery mildew incidence.				
	Significantly higher seed yield was recorded in CS 95 (8.70 g plant ⁻¹) compared				
	to the best check CO(CR) 4 (7.20 g plant ⁻¹). The other best performing				
	genotypes were CS 162 (8.60 g plant ⁻¹) and CS 131 (8.40 g plant ⁻¹).				

Dholi	Eighty-one (81) accessions of coriander along with two checks (Pant Haritma and Rajendra Dhania-1) were evaluated for promising lines with respect to yield. Out of eighty-one accessions, only four accessions namely- RD-417, RD-412, RH-389 and RD-442 gave higher yield than check variety, Rajendra Dhania-1 (81.73 g per five plant) and Pant Haritma (74.26 g per five plant). The yield of best ten accessions ranged from 58.40 to 84.72 g per five plants. Among the promising accessions, RD-417 gave the highest yield 84.72 g per five plants, followed by RD-412 (84.69 g per five plant).
Guntur	During 2023-24, among thirty-five germplasm lines evaluated, LCC-319, LCC-344, LCC-343, LCC-336 and LCC-316 were found superior in yield. Twelve new germplasm lines under leafy entries were collected and forty-nine entries were evaluated. LCC-387 was found promising and recorded highest fresh herb yield.
Hisar	One hundred accessions of coriander were evaluated in two row plots of 3.0 meter length each using Hisar Sugandh, Hisar Bhoomit and Hisar Anand as checks during 2023-24. The seed yield of the germplasm material ranged from from 12.8 g plant ⁻¹ (DH-284) to 37.8g plant ⁻¹ (DH-280). The most promising lines for seed yield were DH-207, DH-212, DH-228, DH-234, DH-279, DH-280, DH-294-1, DH-297-1, DH-301 and DH-307.
Jagudan	During 2023-24, total 151 entries were evaluated along with the check G. Cor 3. UD 217, JCr 2013-9, UD 184, Lam-44, JCr-378, JCr 2013-11 were the highest yielding genotypes. Promising genotypes for yield and yield attributing characters were mentioned in table.
Jobner	Three hundred fifty one (351) germplasm accessions of coriander were evaluated along with nine check varieties viz., RCr 20, RCr 41, RCr-435, RCr-436, RCr-446, RCr 475, RCr-480, RCr-684 & RCr-728 in augmented design having six blocks. Each accession was sown in plots of 3 x 0.3 m² size accommodating one row spaced 30 cm apart. The trial was sown on 27.10.2023. One-meter uniform section of each plot was maintained by bagging with muslin cloth and on maturity, seeds were harvested separately to obtain the self-seed to raise in next season. Data on seed yield and other morphological traits were recorded on a random sample of five plants and averaged. A wide range of variability was recorded for all the characters studied. Seed yield per five plants ranged from 2.0 g (UD-576) to 64.0 g (UD 451). Based on seed yield per five plants, out of 351 accessions evaluated, only 29 accessions were found superior than best check variety RCr-475 (33.25 g). Promising top ten accessions identified based on seed yield per five plants are UD-451 (64.0 g), UD-473 (62.0 g), UD-228 (55.0 g), UD-744 (55.0 g), UD 449 (53.0 g), UD-208 (51.0 g), UD-500 (50.0 g), UD-568 (50.0 g), UD-595 (50.0 g), and UD-568 (48.0 g)
Kumarganj	A total of 141germplasm of coriander were evaluated at MES, Kumarganj. The highest yield was recorded in NDCor-22 (32.50 g plant ⁻¹) followed by NDCor-11 (30.75 g plant ⁻¹), NDCor-12 (28.60 g plant ⁻¹) and NDCor-32 (26.90 g plant ⁻¹).
Raigarh	Total 32 germplasm of Coriander maintained at CARS, Raigarh during Rabi 2023. Evaluation of PGR revealed that maximum seed yield inICS 20 (48.20 g plant ⁻¹) followed by ICS 2(47.2 g plant ⁻¹) and ICS 26 (46.9 g plant ⁻¹) over the check HisarAnand (37.15 g plant ⁻¹), CG Shri Chandrahasini Dhaniya-2 (34.9 g plant ⁻¹) and Rajendra Swati (24.85 g plant ⁻¹). Nucleus seeds of all the three varieties of coriander CG Dhaniya -1 (3 Kg); CG Shri Chandrahasini Dhaniya-2 (40 Kg) and CG Raigarh Dhaniya-3 (25 Kg) maintained at AICRP on Spices, Raigarh.

Project Code	COR/CI/2.8	Project Title	Coordinated Series XI	Varietal Trial on coriander 2021-
Centres	Ajmer, Coimb	atore, Dholi, Gi		abalpur, Jagudan, Jobner, Kalyani,
	Kota, Kumargani, Navsari, Pantnagar, Raigarh, Sanand			
Date of start	2021-22 Date of closure/ duration 2023-24			
Experimental de	etails		OR 102 (Navsa	uri)
		2. LCS-19-1 (Guntur)		
			24 (Sanand)	,
		4. DH 316 (Hisar)		
			16-02 (Jagudai	n)
			565 (Jobner)	/
			7 (Pantnagar)	
			Cor 22 (Kumar	gani)
			46 (Coimbatore	<u> </u>
			15 (Raigarh)	,
			r 6 (Ajmer)	
			ar Anand (Chec	ek)
			728 (Check)	
			; 3 replications	
Observations Re	corded	1. Germinatio		,
O DECT VICTORIES THE			% flowering	
		3. Plant heigh	_	
			' '	nt.
		4. Primary Branches per plant5. Secondary Branches per plant		
		6. Days to maturity		
		7. Umbels per	•	
			per umbel	
			ımbel	
		10. Test weight		
			of pests (mites,	anhide)
			-	t, powdery mildew, stem gall,
		blight)	n uiseases (wiii	i, powdery mildew, stem gan,
		14. Quality		
Work dono/oobi	Work done/achievements during		o wico)	
Ajmer				lifferences among the entries for all
Ajilici	•		_	ranged from 1066.33 to 1454.00 kg
		eed yield was recorded in COR-198 (1454.00) kg ha -1 followed by (7.00 kg ha -1) while the lowest seed yield of 1066.33 was recorded		
	COR-194 (1407.00 kg ha ⁻¹) while, the lowest seed yield of 1066.33 was recorded in COR-201.			
Coimbatore	The plant height of the genotypes ranged from 38.26cm to 66.33 cm. The highest			
Commontore	number of umbels per plant was recorded by the genotypes COR 206 (31.56)			
	followed by COR 205 (25.53) and CO			• • • • • • • • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·		•	198 (961.20kg ha ⁻¹) and COR 203
(907.00kg ha ⁻¹)		_	iowed by COR	170 (701.20Kg na) and CON 200
Dholi			(Raiendra Dhar	nia-1) were tested under coordinated
DIIOII			-	the thirteen entries, COR-193 gave
				riety, Rajendra Dhania-1 (1608.50
kgha ⁻¹).		(1730.73 Kgiid)	OVEL CHECK VA	micry, Rajendra Dhama-1 (1006.30
	rgiia).			

Guntur	During 2023-24, among the 13 coded entries evaluated in CVT, COR-201 (1119.81 kg ha ⁻¹), COR-198 (1031.8 kg ha ⁻¹) and COR-205 (959.2 kg ha ⁻¹) entries
	were found promising.
Hisar	The significant differences were obtained for all the parameters. The plant height ranged from 114.7 to 147.0 cm, number of branches 6.0 to 9.5, umbels per plant 44.8 to 68.0 and seeds per umbel 22.7 to 38.5. Maximum seed yield (1836 kg ha ⁻¹) was recorded in COR-193 followed by COR-195 (1789 kg ha ⁻¹) and COR-196
T 1 1	(1756 kg ha ⁻¹).
Jabalpur	Thirteen genotypes of coriander were evaluated under a Coordinated Varietal Trial during the Rabi season of 2023-2024. The experiment was conducted using a Randomized Block Design (RBD) with three replications. The tallest plants were observed in Treatment COR-199 (115.07 cm), followed by COR-193 (112.52 cm). The highest seed yield was exhibited by genotype COR-199 (17.68 q ha ⁻¹), which was comparable to COR-194 (15.73 q ha ⁻¹). Additionally, the highest test weights were recorded in genotypes COR-199 (17.37 g) and COR-194 (16.47 g).
Jagudan	The yield differences among the entries were found significant and entries were tested with local check G.Co 3 which yield 1478 kg ha ⁻¹ . COR 204 (1623 kg ha ⁻¹) found superior over the local check G.Co 3 with 9.8 per cent. Entries COR 195 (1602 kg ha ⁻¹) and COR 194 (1532 kg ha ⁻¹) were numerically higher than check G.Co 3 with 8.4 and 3.7 per cent, respectively.
Jobner	During <i>rabi</i> , 2023-24, thirteen (13) entries were evaluated in RBD with 3 replications in a plot size of 3 x 2.4 sq. m. accommodating eight rows spaced 30 cm apart with plant to plant distance of 10 cm maintained by thinning. The trial was sown on 26.10.2023. The analysis of variance revealed significant differences among the entries for seed yield and yield attributing characters. The seed yield ranged from 1315.28 kg ha ⁻¹ (COR-197) to 2149.54 kg ha ⁻¹ (COR-196). Out of the thirteen entries evaluated, COR-196 recorded maximum seed yield (2149.54 kg ha ⁻¹) followed by COR-202 (1955.09 kg ha ⁻¹), COR-194 (1953.89 kg ha ⁻¹), COR-199 (1891.21 kg ha ⁻¹) and COR-202 (1874.08 kg ha ⁻¹) while lowest seed yield of 1315.28 kg ha ⁻¹ was recorded in COR-197.
Kalyani	In the 3 rd year crop (2023-24) results showed that the maximum projected yield of 12.30 q ha ⁻¹ was recorded in CoR-200 followed by CoR-206 (11.06 q ha ⁻¹) and CoR-194 (10.52 q ha ⁻¹) as compared to lowest in CoR-199 (7.09 q ha ⁻¹). Based on these results of the experiment, CoR-200 was found the most suitable germplasm in Gangetic alluvial plains of West Bengal followed by CoR-206 and CoR-194 in respect of growth and yield characters. The result followed the similar trend of last years observation.
Kota	During the third and final year of evaluation, COR 204 was found to be the best performing entry in terms of seed yield, yielding 1503 kg ha ⁻¹ followed by COR 196 (1490 kg ha ⁻¹) and COR 198 (1427 kg ha ⁻¹). COR 201, COR 200 and COR 195 had the highest test weight of 21.90g, 21.00g, 20.50g respectively, while COR 193 and COR 202 had the lowest test weight of 8.10g and 10.50g, respectively. COR 199 and COR 194 had highest plant height (114cm and 112cm, respectively) while COR 197 and COR 205 was shortest (104 cm). COR 201 showed earliest flowering (69 days) and maturity (118 days) while COR 193 and COR 202 was the most late in flowering (82 days) and maturity (129 days and 127 days, respectively).
Kumarganj	Thirteen entries of coriander were evaluated under CVT Coriander. The highest yield was recorded in Cor-196 (17.54 q ha ⁻¹) followed by Cor-197 (17.02 q ha ⁻¹) and Cor-193 (16.47 q ha ⁻¹). In three year (2021-22 to 2023-24) pooled data the

	highest yield was recorded in Cor-196 (16.85 q ha ⁻¹) followed by Cor-199(15.44 q ha ⁻¹) and Cor-200 (14.79 q ha ⁻¹).
Navsari	Total of thirteen entries evaluated at Navsari, COR-194 (1708.69 kg ha ⁻¹) recorded numerically highest seed yield followed by COR-202 (1640.97 kg ha ⁻¹) and COR-199 (1615.93 kg ha ⁻¹). The highest seed yielding genotype COR-194 has also exhibited higher yield contributing traits viz. umbels per plant, umbellates per umbel, primary branches per plant, secondary branches per plant and plant height.
Pantnagar	Among the genotypes evaluated, COR-199 achieved the highest seed yield with 2335.44 kg ha ⁻¹ , demonstrating moderate performance in terms of seeds per umbel (52.67) and number of primary branches per plant (5.00), with a longer maturation period of 143.00 days. Similarly, COR-200 had a high seed yield of 2310.28 kg ha ⁻¹ with comparable characteristics (52.67 seeds per umbel and 5.33 primary branches) and a maturation period of 142.67 days. COR-196, while yielding slightly lower at 1952.21 kg ha ⁻¹ , exhibited the highest number of seeds per umbel (58.33) and a similar maturation period of 141.67 days. The genotype COR-202 had the highest number of primary branches per plant (6.33) but a relatively lower seed yield of 1123.25 kg ha ⁻¹ . Overall, genotypes COR-199 and COR-200 stand out as the most promising for high seed yield, though with slightly extended maturation periods.
Raigarh	Evaluation of CVT coriander entries during Rabi 2023-24 revealed that COR 194 recorded highest seed yield (1800 kg ha ⁻¹) followed by COR 205 (1799 kg ha ⁻¹) and COR 203 (1714 kg ha ⁻¹) over the Check CG Shri Chandrahasini Dhaniya-2 (1495 kg ha ⁻¹) and CG Dhaniya-1 (998.8 kg ha ⁻¹).
Sanand	Thirteen entries were tested under the CVT trial. The yield differences among the entries were found significant. Entry CoR 198 was top yielder with seed yield 3568 kg ha ⁻¹ . Entries CoR 194 (3123 kg ha ⁻¹), CoR 195 (3465 kg ha ⁻¹), CoR 196 (3252 kg ha ⁻¹), CoR 197 (3157 kg ha ⁻¹), CoR 202 (3041 kg ha ⁻¹), CoR 203 (3103 kg ha ⁻¹) and CoR 204 (3396 kg ha ⁻¹) were yielded at par with top yielder entry. Entry CoR 193 and CoR 202 were noted as leafy type and late. Entry CoR 201 found earliest among all entries.

CUMIN

Project Code	CUM/CI/1.1	Project Title	Germplasm	collection,	characterization,
		-	evaluation,	conservation and	screening against
			diseases		
Centres	Jagudan, Jobne	r, Mandor, Sana	and		
Date of start	1975	Date of closur	e/ duration	Long term	
Work done/achie	evements during	g 2023-24 (centi	re-wise)		
Jagudan	During 2023-2	4, 172 to 335 go	ermplasms we	ere evaluated with	GC4. Cumin crop
	was heavily	affected due to	adverse er	vironmental cond	litions and blight
	infestation. Th	ough JC 2002-3	37, JC 2002-3	34, JC 2002-27, JC	2002-18, Dehgam
	5-2017 were the highest yielding genotypes. Promising genotypes yield				
	attributing cha	racters were me	ntioned in tab	le.	
Jobner	One hundred so	eventy (170) ger	mplasm acce	ssions were evalua	ted along with five
					7-345 in augmented
					e trial was sown on
	20.11.2023. On	ne-meter uniforr	n section of e	each row of a plot	was maintained by
	bagging with a	nuslin cloth and	d on maturity	y seeds were harve	ested separately to
	obtain the self-	seed to raise in	next season.		

	A wide range of variability was observed for all the characters studied. Based on
	seed yield per five plants, out of One hundred seventy accessions, fifteen
	accessions were recorded superior over the best check variety RZ-19 (18.0 g).
	Promising accessions identified based on seed yield per five plants are NC 2022-
	48, (28.0 g), NC 2022-85 (27.0 g) NC 2022-15 (27.0 g) NC 2022-4 (26.0 g) UC
	257 (26.0 g) NC 2022-46 (25.0 g) NC 2022-86 (25.0 g) NC 2022-6 (25.0 g) NC
	2022-45 (23.0 g) and NC 2022-35 (22.0 g)
Mandor	Total 58 germplasm lines available at the centre along with checks GC 4, MCU-
	105 and MCU-9 were evaluated in augmented design. 11 entries sowed significant
	gain in seed yield over best check MCU-105 (300 g/plot). 20 entries found to be
	wilt resistant and 8 entries were blight tolerant. 10 entries had more then 4.00 g
	1000 seed weight.
Sanand	Total twenty two germplasm were sown to evaluated along with two checks viz.,
	GC 2 and GC 4. All lines maintained successfully and significant difference were
	found among all germplasm lines for seed yield. Line Piplon-1 recorded highest
	seed yield (310 g/plot) among all germplasm lines.

Project Code	CUM/CI/2.5	Project Title	Coordinated	Varietal Trial – 2021	
Centres	Ajmer, Jaguda	ngudan, Jobner, Mandor, Sanand			
Date of start	2021-22	Date of closure/ duration 3 years (2023-24)			
Experimental de	tails	Genotypes			
		1. CZC	- 94 (CAZRI)		
		2. CZC- 135 (CAZRI)			
			J 73 (Mandor	,	
			J 105 (Mando	*	
			8-10 (Jagudar	, and a second s	
			8-09 (Jagudar	1)	
			350 (Jobner)		
			257 (Jobner)		
			250 (Jobner)		
			10. SPS/166/2-3 (Ajmer)		
		11. BC 13 (Ajmer)			
		12. GC 4 (check)			
		Design: RBD; Replication: 3; Plot Size: 3 x 2.4 m; spacing : 30 x 5 cm			
Observations Re	الم اسم			1g: 30 x 5 cm	
Observations Re	ecorueu	1. Germination %			
		2. Days to 50% flowering			
		3. Plant height (cm)			
		4. Primary branches per plant			
		5. Secondary branches per plant			
		6. Days to maturity			
			7. No. of pods per plant8. No. of grains per pod		
		9. Length of pod (cm) 10. Test weight (g)			
		11. Seed yield (kg ha ⁻¹)			
		12. Incidence of pests (mites, aphids)			
		13. Incidence of diseases (Blight, wilt, powdery mildew, cumin			
		aphid, thrips etc.)			
		14. Quality (Oil Content in %)			

Work done/a	achievements during 2023-24 (centre-wise)
Ajmer	Coordinated varietal trial (CVT) of coriander was carried out under AICRPS at ICAR –NRCSS, Ajmer during 2023-24. 13 entries were evaluated in three replications in RBD with checks in a plot size of 4 x 2.5 sq. m. The trial was sown on 07.11.2023. The analysis of variance revealed significant differences among the entries for all the traits including seed yield. The seed yield ranged from 1066.33 to 1454.00 kg ha ⁻¹ . Highest seed yield was recorded in COR-198 (1454.00) kg ha ⁻¹ followed by COR-194 (1407.00 kg ha ⁻¹) while, the lowest seed yield of 1066.33 was recorded in COR-201.
Jagudan	Entries recorded very low yield and experiment mean yield was below national average yield data. So, the experiment was vitiated due to heavy yield loss due to severe blight infestation and unseasonal rainfall.
Jobner	Analysis of variance revealed significant differences among the entries for seed yield and yield attributing characters. The seed yield ranged from 422.68 kg ha ⁻¹ (CUM-51) to 1271.30 kg ha ⁻¹ (CUM-47). Out of twelve entries evaluated, CUM-47 recorded maximum seed yield of 1271.30 kg ha ⁻¹ followed by CUM-55 (1210.00 kg ha ⁻¹), CUM-46 (1135.19 kg ha ⁻¹) and CUM-44 (539.35 kg ha ⁻¹). While lowest seed yield of 422.68 kg ha ⁻¹ was recorded in CUM-51.
Mandor	The CVT general mean was 507 kg ha ⁻¹ with CD (5%) 67 kg ha ⁻¹ and CV 7.8%. Seed yield ranged from 125 kg ha ⁻¹ (CUM-45) to 872 kg ha ⁻¹ (CUM-52). The ancillary data, entry CUM-47 was found earliest in days to 50% flowering (58 days) and days to maturity (118 days). Plant height varied from 27.4 cm (CUM-47) to 46.6 cm (CUM-52), the 1000 seed weight ranged from 3.4 (CUM-50) to 4.9 (CUM-52).
Sanand	Twelve entries were tested under the CVT trial. All entries were affected by cumin root rot and cumin blight disease. Although, characters including seed yield were recorded. Trial CV was 74.52 %. Trial considered as vitiated.

FENNEL

Project Code	FNL/CI/1.1	Project Title	Germplasm evaluation	collection, conservation and	characterization,
			diseases	conservation and	sercening against
Centres	Dholi, Hisar, J	agudan, Jobner,	Kumarganj		
Date of start	1975	Date of closur	e/ duration	Long term	
Work done/achie	evements during	g 2023-24 (cent	re-wise)		
Dholi	Forty-four (44)	numbers of gen	rmplasm alon	g with one check (F	Rajendra Saurabh)
	were evaluated	l for promising	lines with res	spect to yield. Amo	ng 44 numbers of
	germplasm, on	germplasm, only two germplasm, namely- RF-61 and RF-73 out yielded more than			
	check variety, Rajendra Saurabh. Among these promising germplasm, highest				
	yield was recorded in RF-61 (85.83 g per five plant) followed by RF-73 (84.60 g				
	per five plant) against check variety, Rajendra Saurabh (82.40 g per five plant).				
	Yield of top ter	n germplasm yie	lder ranged f	from 44.20 to 85.83	g per five plant.
Hisar	One hundred th	yirty eight acces	ssions of Fen	nel were evaluated is	n two row plots of
	3.0 meter lengt	h each using GF	-2, Hisar Saw	vrup and Raj-Saurab	h as checks during
	2023-24. The s	seed yield of the	germplasm m	aterial ranged from	15.7 g plant ⁻¹ (HF-
	112) to 41.2 g	plant ⁻¹ (HF-134)). The most p	romising lines were	HF-103, HF-105,
	HF-107, HF-1	HF-107, HF-125, HF-129, HF-134 HF-136 HF-167, HF-169, HF-180, HF-182,			
	HF-197 HF-19	8 HF-199, HF-2	00 and HF-2	02.	

Jagudan	During the 2023-24, from 81to 160 genotypes were evaluated with the check variety GF 12. JF 351-5, JF 391, JF 531-1, JF 472-2, JF 303 were high yielding genotypes. Promising genotypes yield attributing characters were mentioned in table.
Jobner	Fifty-seven (57) Inbred lines of fennel were evaluated along with ten checks namely RF-101, RF-125, RF-143, RF-145, RF-157, RF-178, RF-205, RF-281, RF-289 and RF-290 in augmented design in 3 blocks with one row plot of 3 x 0.5 sq.m. size. The trial was sown on 22.10.2023. One-meter uniform section of each row of a plot was maintained by bagging with muslin cloth and on maturity seeds were harvested separately to obtain the self seed to raise the crop for next season. A wide range of variability was found for all the characters studied. Out of 57 inbred lines, 04 inbred were better than best check variety RF-289 (77.75 g) on the basis of seed yield per 5 plants. Promising inbred identified on the basis of seed yield per 5 plants were ILF-117 (81.0g) ILF-87 (80.0g) ILF-11 (79.50g) and ILF-112 (78.0g)
Kumarganj	Total 100 germplasm of Fennel was evaluated and recorded maximum yield in NDF-46 (67.30 g plant ⁻¹) followed by NDF-48 (65.70 g plant ⁻¹) and NDF -59 (63.90 g plant ⁻¹).

Project Code	FNL/CI/2.8	Project Title	Coordinated varietal trial on fennel – 2021 Series		
			XI		
Centres	Ajmer, Dholi, Hisar, Jabalpur, Jagudan, Jobner, Kumarganj, Navsari, Pantnagar.				
Date of start	2021-22	Date of closur	e/ duration 3 years (2023-24)		
Experimental de	etails	<u>Genotypes</u>			
		1. HF 1	92 (Hisar)		
		2. HF 2	56 (Hisar)		
		3. JF 18	3-13 (Jagudan)		
		4. JF 18	3-03 (Jagudan)		
			31 (Jobner)		
		6. UF 2	30 (Jobner)		
			7 (Ajmer)		
			7 (Ajmer)		
		9. RF 67 (Dholi)			
		10. NDF 59 (Kumarganj)			
		11. NDF 46 (Kumarganj)			
		12. RF-101 (check)			
		13. RF 205 (check)			
Observations Re	ecorded	1. Germinatio	on %		
		2. Days to 50°			
		3. Plant height (cm)			
		4. Primary branches per plant			
		5. Secondary branches per plant			
		6. Days to maturity			
		7. Umbels per plant			
			8. Umbellets per umbel		
	9. Seeds				
		10. Test weight (g)			
		11. Seed yield per plant (g)			
		12. Seed yield (kg ha ⁻¹)			
		13. Incidence of	of pests (aphids)		

	14. Incidence of diseases (leaf blight, wilt, powdery mildew, gall, bacterial soft rot) 15. Quality
Work done/ach	nievements during 2023-24 (centre-wise)
Ajmer	Thirteen entries were evaluated along with checks in three replications in RBD with plot size of 4 x 2.5 sq. m. The trial was sown on 10.10.2023. The analysis of variance revealed significant differences among the entries for all the traits including seed yield. The seed yield ranged from 2382.33 kg ha ⁻¹ to 3423.67 kg ha ⁻¹ . Highest yield was recorded in FNL-137 (3467.23 kg ha ⁻¹) followed by FNL-130 (3370.67 kg ha ⁻¹). Whereas, the lowest seed yield 2382.33 was recorded in FNL-132.
Dholi	Among the thirteen test entries and one check, entries <i>viz.</i> , FNL-136 followed by FNL-136 gave yield of 1782.23 kg ha ⁻¹ and 1771.68 kg ha ⁻¹ respectively as compared to check variety, Rajendra Saurabh (1613.48 kg ha ⁻¹).
Hisar	The significant differences were obtained for all the parameters. The plant height ranged from 125.6 to 156.5 cm, number of branches 6.8 to 9.1, umbels per plant 31.5 to 41.8 and seeds per umbel 551.6 to 658.8. Maximum seed yield was recorded as 2138.7 kg ha ⁻¹ in FNL-130 followed by FNL-132 (2085.3 kg ha ⁻¹) and FNL-131 (2010.7 kg ha ⁻¹), respectively.
Jabalpur	In fennel, thirteen genotypes were evaluated under a Coordinated Varietal Trial using a Randomized Block Design with three replications during the Rabi season of 2023-24. Significant differences were observed for all the morphological and yield parameters studied. Early 50% flowering was recorded in genotypes FNL-132 (85 days) and FNL-137 (86 days). The genotype FNL-134 exhibited the maximum plant height (179.33 cm) and the highest number of branches (5.07) at maturity. The highest seed yield was recorded in FNL-141 (16.83 q ha ⁻¹), which was comparable to FNL-142 (15.59 q ha ⁻¹). Genotype FNL-142 also showed the highest number of umbels per plant (28.33) and umbellets per umbel (27.43). The maximum test weight was observed in FNL-141 (13.13 g).
Jagudan	The CVT experiment of fennel was conducted with thirteen entries and one local check variety GF 12. FNL 135 (2349 kg ha ⁻¹) and FNL 134 (2319 kg ha ⁻¹) was significantly superior to the best local check variety GF 12 (1838 kg ha ⁻¹) with 27.8 and 26.2 per cent increase over.
Jobner	In <i>rabi</i> 2023-24, thirteen (13) entries were evaluated in RBD with 3 replications in a plot size of 3 x 2.5 sq. m. accommodating five rows spaced 50 cm apart with intra-row spacing of 20 cm maintained by thinning. The trial was sown on 22.10.2023. The analysis of variance revealed significant differences among the entries for all the characters studied including seed yield. The seed yield ranged from 1310.22 to 2151.55 kg ha ⁻¹ . Out of the thirteen entries evaluated, entry FNL-140 recorded maximum seed yield of 2151.55 kg ha ⁻¹ followed by FNL-131 (2091.55 kg ha ⁻¹), FNL-141 (2019.11 kg ha ⁻¹), FNL-134 (2018.66 kg ha ⁻¹) and FNL-142 (2013.33 kg ha ⁻¹), while lowest seed yield of 1310.22 kg ha ⁻¹ was recorded in FNL-133.
Kumarganj	A total of 13entries of fennel were tested in CVT and recorded maximum yield in FNL-134 (18.75 q ha ⁻¹) followed by FNL-133 (18.06 q ha ⁻¹) and FNL-132 (16.18 q ha ⁻¹). In three year pooled data the highest yield recorded in FNL-134 (17.08 q ha ⁻¹) followed by FNL-133 (15.85 q ha ⁻¹) and FNL-132 (14.86 q ha ⁻¹)
Navsari	Among the thirteen entries at Navsari, entry FGK-145 (1262.03 kg ha ⁻¹) recorded numerically higher seed yield followed by FGK-146 (1246.53 kg ha ⁻¹), FGK-151 (1237.17 kg ha ⁻¹), FGK-144 (1213.63 kg ha ⁻¹) and FGK-142 (1211.63 kg ha ⁻¹). The high seed yielding genotypes were also found numerically higher for other

	seed yield attributing characters viz. pods per plant, seeds per pod, pod length,
	primary branches per plant, secondary branches per plant and plant height. The
	genotype FGK-142 was found to be early in flowering (44.33 days) and maturity
	(100.00 days).
Pantnagar	Among the genotypes tested, FNL-135 demonstrated the highest seed yield with
	1666.01 kg ha ⁻¹ , the maximum number of seeds per umbel at 402.00, and the
	highest number of primary branches per plant at 11.67, albeit with one of the longer
	days to maturity at 217.00 days. FNL-141, while exhibiting the highest number of
	primary branches per plant at 13.00, had a relatively lower seed yield of 1478.69
	kg ha ⁻¹ and fewer seeds per umbel at 208.33. On the other hand, FNL-138 matured
	the fastest in 183.33 days but had a lower yield of 1230.26 kg ha ⁻¹ . Overall, FNL-
	135 appears to be the most promising genotype for higher seed yield and number
	of seeds per umbel, despite its longer maturation period.

FENUGREEK

Project Code	FGK/CI/1.1 Project Title Germplasm collection, characterization,				
	evaluation, conservation and screening against				
	diseases				
Centres	Dholi, Guntur, Hisar, Jagudan, Jobner, Kumarganj, Raigarh				
Date of start	1975 Date of closure/ duration Long term				
Work done/achie	evements during 2021-22 (centre-wise)				
Dholi	Sixty two (62) accessions of fenugreek along with two checks (Rajendra Kanti and				
	Hisar Sonali) were evaluated for promising lines with respect to yield. Among 62				
	numbers of germplasm, only 4 nos. of germplasm, namely- RM-213, RM-212,				
	RM-187 and RM-203 gave higher yield than best check varieties Rajendra Kanti.				
	The performance of top ten promising accessions ranged from 78.65 to 93.28 g per				
	five plant. Among the four promising germplasm, highest yield was recorded in				
	RM-213 (93.28 g per five plant) followed by RM -187 (92.70 g per five plant) as				
	against check varieties, Rajendra Kanti (76.21 g per five plant) and Hisar Sonali				
Guntur	(74.37 g per five plant). Among the 124 entries evaluated, ten entries recorded significantly higher yield				
Guntur	than the best check Lam Methi-2 (3.03 g plant ⁻¹). The top five performing entries				
	are LFC-41 (4.92 g plant ⁻¹), LFC-32 (4.72 g plant ⁻¹), LFC-38 (4.67 g plant ⁻¹), LFC-				
	51 (4.57 g plant ⁻¹) and LFC-122 (4.51 g plant ⁻¹). Further, all the 124 accessions were evaluated for herb yield. Among the entries, LFC-122 performed superior				
	over all the entries.				
Hisar	One hundred twentu accessions of fenugreek were evaluated along with Hisar				
	Sonali, Hisar Suvarna and Hisar Mukta as checks during 2023-24. The seed yield				
	of the germplasm material ranged from 9.2 g plant ⁻¹ (HM-246) to 32.2 g plant ⁻¹				
	(HM-440). The most promising lines for seed yield were HM-240, HM-259-1,				
	HM-273, HM-278, HM-326, HM-331, HM-335, HM-338, HM-342-1, HM-429				
	and HM-440.				
Jagudan	During the 2023-24, total 82 germplasms were evaluated along with check variety				
	GM 2. JFg-267, JFg-255, JFg-245, JFg-239 were the highest yielding germplasms.				
Jobner	One hundred ten (110) germplasm accessions of fenugreek were evaluated along				
	with seven check varieties viz., RMt-1, RMt-143, RMt-303, RMt-305, RMt-351				
	and RMt-354 in augmented design having six blocks. Each accession was sown in				
	plots of 3 x 0.3 m ² size accommodating single rows spaced 30 cm apart. The trial				

	was sown on 06.11.2022. Data on seed yield and other morphological traits were					
	recorded on a random sample of five plants and averaged.					
	A wide range of variability was recorded for all the characters studied. Based on					
	seed yield per five plants, out of 110 accessions evaluated, only 14 accessions were					
	found superior than best check variety RMt-354 (39.40 g). Promising top five					
	accessions identified based on seed yield per five plants are LFC 75 (60.0 g) LFC					
	117 (60.0 g) LFC 70 (55.0 g) LFC 113 (52.0 g) and LFC 100 (50.0 g)					
Kumarganj	A total of 148 germplasm of fenugreek were maintained and evaluated at the					
	station. The highest yield was found in NDM-49 (12.70 g plant ⁻¹) followed by					
	NDM-37 (11.30 g plant ⁻¹) and NDM-45 (10.80 g plant ⁻¹).					
Raigarh	Total 14 genotypes (11 germplasm + 3 released varieties) genotypes of fenugreek					
	maintained during Rabi 2023-24 at CARS, Raigarh. The results of PGR of					
	fenugreek reported that maximum seed yield recorded by genotype IFGS-6					
	(2796.9 kg ha ⁻¹) followed by IFGS-11 (2458.3 kg ha ⁻¹) and IFGS -09 (2395.8 kg					
	ha ⁻¹) over both national check Hisar Sonali (1489.6 kg ha ⁻¹) and RMT 305 (1309.9					
	kg ha ⁻¹) as well as over grand mean of trial (1828.7 kg ha ⁻¹).					

Project Code	FGK/CI/2.5	Project Title	Coordinated	Varieta	ıl Trial o	f fenno	reek 2021 –
Troject Code	1 GR/CI/2.5	Project Title Coordinated Varietal Trial of fenugreek 2021 Series XI			,100K 2021		
Centres	Aimer Dholi	Hisar Tahalnu		Iohner	Kalvani	Kota	Kumargani
Centres	Navsari, Pantn	Hisar, Jabalpur, Jagudan, Jobner, Kalyani, Kota, Kumarganj,					
Date of start	2021-22	Date of closur	e/ duration	3 years	(2023-24	1)	
Experimental de		Genotypes	c, adiation	5 yours	(2028 2	• /	
2. per inicitur de	tuis .		242 (Hisar)				
			560 (Hisar)				
			17-02 (Jaguda	n)			
			17-06 (Jaguda	,			
			201 (Navsari				
			202 (Navsari				
		7.UM 2	259 (Jobner)				
		8. UM	233 (Jobner)				
		9. PM 4	(Pantnagar)				
		10. AF	g 9 (Ajmer)				
		11. AFg 10 (Ajmer)					
		12. IFGS6 (Raigarh)					
		13. KFG 12 (Kota)					
		14. KFG 17 (Kota)					
		15. NDM 119 (Kumarganj)					
		16. Hisar Sonali (check)					
		17. RM	t 361 (check)				
Observations Re	corded	1. Germinatio					
		2. Days to 50% flowering					
		3. Plant height (cm)					
		4. Primary branches per plant					
		5. Secondary branches per plant					
		6. Days to maturity					
			7. No. of pods per plant				
		8. Seeds per p					
		9. Pod length (cm)					
		10. Test weight (g)					
		11. Seed yield per plant (g)					

	 12. Seed yield (kg ha⁻¹) 13. Incidence of pests (aphids, leaf eating caterpillar, pod borer) 14. Incidence of diseases (Downy mildew, damping off, rust, root rot, leaf spot <i>etc</i>.) 15. Quality 			
Work done/ach	ievements during 2023-24 (centre-wise)			
Ajmer	The trial was sown on 07.11.2023. analysis of variance revealed significant differences among the entries for all the traits including seed yield. The seed yield ranged from 1033.67 kg ha ⁻¹ to 1597 ka/ha. Of the 17 entries evaluated, highest yield was recorded in FGK-147 (1597 kg ha ⁻¹) followed by FGK-146 (1546. 33 kg ha ⁻¹) and the lowest seed yield was recorded in FGK-153 (1033.67 kg ha ⁻¹).			
Dholi	Among seventeen entries and one check variety, entry, FGK-147 followed by FGK-155 was found to have higher yield per ha as compared to check variety, Rajendra Kanti. Entries <i>viz.</i> , FGK-147 recorded highest yield (2033.44 kg ha ⁻¹) followed by FGK-155 (2016.91 kg ha ⁻¹) as compared to check variety, Rajendra Kanti (1545.70 kg ha ⁻¹).			
Hisar	The significant differences were obtained for all the parameters. Plant height ranged from 74.6 to 90.8cm, pods per plant 62.1to 88.4 and seeds per pod 15.0 to 18.4. Maximum seed yield (2322 kg ha ⁻¹) was recorded in FGK-151 followed by FGK-143 (2260 kg ha ⁻¹) and FGK-144 (2231 kg ha ⁻¹), respectively.			
Jabalpur	Seventeen genotypes of fenugreek germplasm were evaluated during the <i>Rabi</i> season of 2023-2024 at JNKVV, Jabalpur Centre. Among the promising entries and checks, the genotype FGK-144 exhibited the highest plant height at 105.27 cm, while FGK-145 recorded the minimum plant height at 80.73 cm. The highest seed yield was observed in genotype FGK-152 i.e. 22.96 q ha ⁻¹ , which was comparable to FGK-144 (22.37 q ha ⁻¹) and FGK-151 (22.28 q ha ⁻¹). Additionally, FGK-152 demonstrated the highest test weight (16.85 g).			
Jagudan	Seventeen entries of fenugreek were evaluated along with local check GM 3. The entries tested under the trial were found significant differences for yield. FGK -155 (1859 kg ha ⁻¹) and FGK-146 (1778 kg ha ⁻¹) found superior over best check variety GM 3 (1630kg ha ⁻¹) by 14.0 and 9.1 <i>per cent</i> , respectively.			
Jobner	Analysis of variance revealed significant differences among the entries for seed yield and yield attributing characters. The seed yield ranged from 1145.84 kg ha ⁻¹ (FGK-153) to 2067.13 kg ha ⁻¹ (FGK-155). Out of the seventeen entries evaluated, entry FGK-155 recorded maximum seed yield of 2067.13 kg ha ⁻¹ followed by FGK-147 (2033.33 kg ha ⁻¹), FGK-154 (2016.20 kg ha ⁻¹), FGK-151 (1984.26 kg ha ⁻¹) and FGK-148 (1977.78 kg ha ⁻¹).			
Kalyani	From the result of the 3 rd year (2023-24) it is found that the following germplasm FGK-146, FGK-152, FGK-148, FGK-155 are found promising in this agroclimatic situation. Among them FGK-146 produced maximum yield of 11.75 q ha ⁻¹ .			
Kota	During the third year of evaluation, FGK 146 was found to be the best performing entry in terms of seed yield, yielding 2479 kg ha ⁻¹ followed by FGK 141 (2218 kg ha ⁻¹) and FGK 148 (2201 kg ha ⁻¹) while FGK 145 had the lowest yield (1028 kg ha ⁻¹). The mean test weight ranged from 8.80g (FGK 145) to 14.00g (FGK 154). FGK 154 had highest plant height (109 cm) while FGK 152 was shortest (81 cm). The genotypes FGK 148 (48 days), FGK 147, FGK 140 and FGK 141 showed earliest flowering (49 days) while FGK 142, FGK 153 and FGK 155 was the most late in flowering (56 days). FGK 147 and FGK 144 were earliest in maturity (134 days) while FGK 139 was the most late in maturity (139 days).			

Kumarganj	A total of 17 entries of fenugreek were tested under CVT and recorded maximum yield in FGK-147 (23.29 q ha ⁻¹) followed by FGK-139 (22.54 q ha ⁻¹), FGk-156 (22.14 q ha ⁻¹) and FGk-152 (21.07 q ha ⁻¹). In three year yield pooled data the highest FGK-145 (22.49 q ha ⁻¹) followed by FGK-147 (21.36 q ha ⁻¹), FGk-1148 (19.31 q ha ⁻¹) and FGk-139 (19.10 q ha ⁻¹)
Navsari	Seventeen genotypes were evaluated under coordinated varietal trial in randomized block design with three replications during Rabi- 2023 at Navsari. The genotype FGK-145 (1262.03 kg ha ⁻¹) recorded numerically higher seed yield followed by FGK-146 (1246.53 kg ha ⁻¹), FGK-151 (1237.17 kg ha ⁻¹), FGK-144 (1213.63 kg ha ⁻¹) and FGK-142 (1211.63 kg ha ⁻¹). The high seed yielding genotypes were also found numerically higher for other seed yield attributing characters viz. pods per plant, seeds per pod, pod length, primary branches per plant, secondary branches per plant and plant height. The genotype FGK-142 was found to be early in flowering (44.33 days) and maturity (100.00 days).
Pantnagar	Among the genotypes, FGK-154 demonstrated the highest seed yield at 1987.49 kg ha ⁻¹ , along with the highest number of primary branches per plant (7.33) and a high seed count per pod (16.67), with a maturity period of 129 days. FGK-147 also showed high performance with a seed yield of 1954.16 kg ha ⁻¹ and a shorter maturity period of 135 days, but had a lower seed count per pod (11.26). FGK-145, while having a shorter maturity period of 128.33 days, achieved a seed yield of 1775.92 kg ha ⁻¹ and a high seed count per pod (16.00). FGK-151 and FGK-144 also performed well with seed yields of 1787.26 kg ha ⁻¹ and 1767.85 kg ha ⁻¹ , respectively, coupled with high seed counts per pod and reasonable maturity periods. Overall, FGK-154 stands out as the most promising genotype for high seed yield and favorable agronomic traits, despite the variation in the number of seeds per pod across genotypes. Other notable genotypes include FGK-147, FGK-145, and FGK-151, which balance high seed yields with shorter maturation periods.
Raigarh	The results of CVT of fenugreek revealed FGK 144 (2167 kg ha ⁻¹) recorded highest seed yield followed by test entry FGK 141 (1736 kg ha ⁻¹) and FGK 140 (1684 kg ha ⁻¹) over mean value 1369.1 kg ha ⁻¹).

AJWAIN

Project Code	AJN/CI/2.1	Project Title	Coordinated	Varietal Trial–2022 Series	
Centres	Ajmer, Guntur,	Guntur, Hisar, Jagudan, Jobner, Kumarganj, Raigarh			
Date of start	2022-23	Date of closur	e/ duration	3 years (2024-25)	
Experimental de	tails	Treatments/ger	<u>iotypes</u>		
		1. MAS-19-1	(Jagudan)		
			2. LAS-19-2 (Jagudan)		
		3. HAJ-38 (Hisar)			
		4. HAJ-7 (Hisar)			
		5. JA-19-05 (Jagudan)			
			(Jagudan)		
		7. AA-16 (Ajmer)			
			8. AA-45 (Ajmer)		
			9. AA-24 (Ajmer)		
	10. Ajmer Ajwain-2 (Check)			()	

		D: DDD D 1: /: 2 DI / : / : 400 2.5 2		
		Design: RBD; Replications:3; Plot size/spacing: 4.00x2.5m ²		
Observations Decorded		Spacing- 50x20cm;		
Observations Recorded		1. Germination %		
		2. Days to 50% flowering (on plot basis)		
		3. Plant height (cm)		
		4. Primary branches per plant		
		5. Secondary branches per plant		
		6. Days to maturity		
		7. Umbels per plant		
		8. Umbellets per umbel		
		9. Seeds per umbel		
		10. Test weight (g)		
		11. Seed yield (kg ha ⁻¹)		
		12. Disease and pest incidence, if any		
		13. Quality (essential oil %)		
		g 2023-24 (centre-wise)		
Ajmer		on growth parameters, yield attributes and yield were recorded. Plant		
		from 86.66 to 109.33 cm, number of umbels/plant ranged from		
		.16 and number of seeds/ umbellate ranged from 16.17 to 21.97.		
		d yield (1733.17 kg ha ⁻¹) was recorded in AJN-22 followed by AJN-		
	_	ha ⁻¹). Maximum essential oil was obtained in AJN-25 (5.7%)		
	genotype.			
Guntur		ntries evaluated, AJN-28 (1470.1 kg ha ⁻¹) significantly recorded		
		and was on par with the entries AJN-27 (1429.0 kg ha ⁻¹), AJN-25		
	(1389.6 kg ha ⁻¹), AJN-24 (1386.6 kg ha ⁻¹) and AJN-22 (1373.3 kg ha ⁻¹).			
Hisar	_	t differences were obtained for all the parameters. Plant height		
		08.2 to 125.3 cm, umbels per plant 216.3 to 378.3 and seeds per		
		303.4. Maximum seed yield (1258.8 kg ha ⁻¹) was recorded in AJN-		
		AJN-20 (1140.0 kg ha ⁻¹) and AJN-26 (1107.5 kg ha ⁻¹), respectively.		
Jagudan		es with local checks GA 1 and GA 2 were evaluated. The entries		
	-	ne trial were found significant differences for seed yield. AJN 23		
	,	found significantly superior than the local check GA 2 (1830 kg		
		per cent. AJN 25 (2048 kg ha ⁻¹) and AJN28 (2031 kg ha ⁻¹) was		
	-	he local check GA 2 by 11.9 and 11.0 per cent, respectively.		
Jobner	•	riance revealed significant differences among the entries for seed		
		attributing characters. Mean seed yield of the ten entries evaluated		
		31.11 to 1824.44 kg ha ⁻¹ ., entry AJN-29 recorded maximum seed		
		4 kg ha ⁻¹ followed by AJN-28 (1356.89 kg ha ⁻¹), AJN-25 (1284.44		
		26 (1242.22 kg ha ⁻¹) and AJN -24 (1230.67 kg ha ⁻¹), while lowest		
	yield of 931.11 kg ha ⁻¹ was recorded in AJN-22.			
Kumarganj	Among the entries tested, AJN -20 gave highest yield (10.56 q ha ⁻¹) followed by			
		q ha ⁻¹) and AJN 23 (9.10 q ha ⁻¹).		
		of CVT of Ajwain revealed that AJN 28 recorded highest seed yield		
), AJN 25 (1034 Kg/h) and AJN 26 (1031.3 kg ha ⁻¹) over local check		
		Ajowain -1 (874.8 kg ha ⁻¹) CG Ajwain-1 recently notified during		
		ation in Chhattisgarh State in CVRC meeting of horticulture crops		
		y 2023. 24 Kg nucleus seeds of CG Ajowain 1 produced during		
	2023-24.			

SAFFRON

Project Code	Project mode	Project Title	Conservation, evaluation and utilization of exotic and indigenous saffron germplasm lines
Centres	Pampore	I	
Date of start	2019	Date of closur	e/ duration Project period
Work done/achie	evements during	g 2023-24 (cent	re-wise)
Pampore	collected from however, 89 g distinctive trai Germplasm lin yield and yield 11 Elite lines Varietal Trial- yield attributin	Kishtwar grovermplasm lines ts. Therefore, es showed signituding traiting traiting traiting (AVT-II) shoug traits. Also co	season i.e., 2023-24, five germplasm lines were ving areas of J&K making a total of 237 lines, were culled out due to low performance and less 148 germplasm are presently under evaluation. ficant performance with regard to growth, quality, s. ck (Shalimar Saffron-1) planted under Advanced wed significant variation with regard to yield and onducted the on-farm trials (OFTs) to demonstrate elite lines of saffron so as to encourage adoption by

KALAZEERA

Project Code	Project mode	Project Title	Exploration, collection and conservation of		
			kalazeera from high altitudes of Northern		
			Himalayas		
Centres	Pampore				
Date of start	2019	Date of closur	e/ duration Project period		
Work done/achie	evements during	g 2023-24 (centi	re-wise)		
Pampore		·	ssions were collected from high altitudes of Drass		
	and Kaksar region of Kargil Ladakh making a total of 103 accessions (98 tuber				
	germplasm and 5 seed germplasm). Under evaluation, there was huge variability				
	among the accessions for various morphological and yield characters.				
	Conducted minikit trials of elite accession of Kalazeera identified as SRS/KZ/177				
	(Proposed name "Shalimar Kalazeera-2) to assess its performance and suitability				
	for release as	a new variety	. Also conducted the on-farm trials (OFTs) to		
	demonstrate an	nd promote the	cultivation of elite lines of Kalazeera so as to		
		otion by local far			

TECHNICAL SESSION II CROP MANAGEMENT

Project code	Title	Centres					
	Cardamom						
CAR/CM/5.5	Effect of micronutrients on growth and yield of small cardamom	Appangala, Mudigere, Myladumpara, Pampadumpara, Sakleshpur					
CAR/CM/5.6	Site-specific recommendations for varying yield targets of cardamom.	Appangala, Mudigere, Myladumpara, Pampadumpara, Sakleshpur					
	Large cardamom						
LCA/CM/5.1	Effect of mulching on yield of large cardamom	Pasighat, ICAR Gangtok, ICRI Gangtok					
CINI/CM /A 1	Ginger	Chintanalla Dhali ICAD Canatala					
GIN/CM/4.1	Evaluation of different ginger-based intercropping systems for higher yield and income	Chintapalle, Dholi, ICAR Gangtok, Kanke, Kalyani, Mizoram, Nagaland, Pottangi, Pundibari, Sirsi, Solan.					
GIN/CM/5.1	Evaluation of Plant Growth Promoting Rhizobacteria, <i>Bacillus safensis</i> for Phosphorus (P) Solubilization Potential in ginger	Ambalavayal, Chintapalli, Kalyani, Kammarpally, Kumarganj, Pasighat, Pottangi, Pundibari, Raigarh,					
GIN/CM/5.2	Evaluation of Plant Growth Promoting Rhizobacteria, <i>Bacillus safensis</i> for zinc (Zn) solubilization potential in ginger	Chintapalli, Kalyani, Kammarpally, Kumarganj, Pasighat, Pottangi, Raigarh,					
	Turmeric						
TUR/CM/5.1	Evaluation of Plant Growth Promoting <i>Rhizobacteria</i> , <i>Bacillus safensis</i> for phosphorus (P) solubilization potential in turmeric	Chintapalli, Coimbatore, Kahikuchi, Kalyani, Kammarpally, Kozhikode, Pasighat, Pottangi, Pundibari, Raigarh, Solan.					
TUR/CM/5.2	Evaluation of Plant Growth Promoting <i>Rhizobacteria, Bacillus safensis</i> for zinc (Zn) solubilization potential in turmeric	Chintapalli, Coimbatore, Dholi, Kahikuchi, Kalyani, Kammarpally, Kanke, Kumarganj, Kozhikode, Pasighat, Pottangi, Pundibari, Raigarh.					
	Coriander						
COR/CM/5.1	Growth and yield of Coriander as influenced by AMF (Arbuscular Mycorrhizal Fungi)	Ajmer, Coimbatore, Dholi, Guntur, Jabalpur, Kota					
COR/CM/6.1	Effect of growth regulators on yield and quality of coriander	Coimbatore, Guntur, Hisar, Jabalpur, Jobner, Kota, Raigarh					
DOM (C) ()	Fenugreek						
FGK/CM/5.1	Growth and yield of fenugreek as influenced by AMF (Arbuscular Mycorrhizal Fungi)	Dholi, Kota, Mandor, Jabalpur					
FGK/CM/6.1	Effect of growth regulators on yield and quality of fenugreek	Ajmer, Dholi, Hisar, Jobner, Kota					

PROGRESS REPORT OF THE PROJECTS

CROP MANAGEMENT

CARDAMOM

Project Code	CAR/CM/5.5	Project Title	Effect of micronutrients on growth and yield of	
110,000 0000			small cardamom	
Centres	Appangala, Mu	angala, Mudigere, Myladumpara, Pampadumpara, and Sakleshpur		
Date of start	2020	Date of closure/ duration TBD		
Experimental details		Spacing/plot si Treatments T ₁ : Recommen T ₂ : Recommen	; Replications: four; Variety: Any three varieties; ze:2×2m, 12 plants per plot ded package of practices (control) ded package of practices + IISR cardamom four sprays at March, April, May, June @ 5 g L ⁻¹	
micronutrient four sprays at March, April, May, June @ 5 ; Physio chemical properties of the soil: pH, nutrient so (major, secondary and micro nutrients) Growth parameters Plant height (cm) Number of tillers per clump Number of bearing tillers per clump Number of panicles per clump Panicle length (cm) Number of capsules per clump Fresh capsule yield per panicle (g) Fresh capsule yield per lcump (g) Fresh capsule yield per hectare (kg) Dry capsule yield per hectare (g) Dry recovery (%) Moritoria May, June @ 5; Fresh capsule yellom micro nutrients so (major, secondary and micro nutrients)		emical properties of the soil: pH, nutrient status ondary and micro nutrients) rameters at (cm) tillers per clump bearing tillers per clump panicles per clump gth (cm) capsules per clump ale yield per panicle (g) ale yield per clump (g) ale yield per hectare (kg) e yield per hectare (g) rry (%) capsules (8 mm) (%) content (%) of pests (shoot borer, shoot fly, thrips)		
***			of diseases (rhizome rot, leaf blight)	
Work done/achi Appangala	Treatments we were recorded yield paramete in all genotype 20.83 to 46.52 13.43%, and N	re imposed after as per schedule. rs. Size of capsus. S. Yield ranged (kg ha ⁻¹) under Ijallani Green G	r establishment and growth and yield parameters Micronutrients spray recorded better growth and ale was better in micronutrient sprayed treatment from 11.6 to 43.05 (kg ha ⁻¹) in control and from micronutrient application. Appangala-1 recorded rold 44.16 % yield increase over control. Due to eason crop setting was very low during 20023-24.	
Mudigere	Growth and yield attributes were significantly superior in treatments where cardamom power mix (IISR Micro nutrients formulation for cardamom) was used as compared to recommended package of practice. Response of cultivars for micronutrients as well as interaction was found to be non significant.			
Myladumpara	The maximum yield was obtained in MCC 260 where the application of IISR micro nutrient mix was applied as foliar application in V3T ₂ (130.19 kg ha ⁻¹) followed by			

	Thiruthali V1T ₂ (108.82). There was significant improvement in number of racemes per panicle for V1 (Thiruthali) and V3 (MCC 260) which were on par with each other
	followed by ICRI 5 (V2).
Pampadumpara	The four sprays of IISR cardamom micronutrient were completed, and significant
	differences among the morphological and yield characters between the treatments
	and varieties were observed. Maximum plant height was recorded for KAU PV3
	(292.806 cm) and also the maximum plant height was registered by T ₂
	(295.878cm). Maximum no. of tillers (39.00) and panicles (47.481) were
	recorded under T ₂ . KAU PV3 showed maximum number of panicles (55.611)
	and panicle length (79.500 cm).
Sakleshpur	Growth and yield attributes were significantly superior in treatments where
	cardamom power mix (IISR Micronutrients formulation for cardamom) was used
	(189.9 kg ha ⁻¹) as compared to recommended package of practice. Among
	different treatments significantly higher plant height (182 cm), number of
	panicles/clump (7.8) and capsule yield (75.8 g plant ⁻¹) was observed in IISR
	power mix treatment. Response of cultivars for micronutrients as well as
	interaction was found to be non-significant.

Project Code	CAR/CM/5.6	Project Title	Site-specific target of car	recommendation for varying yield
Centres	Mudigere, Myl	digere, Myladumpara, Pampadumpara, and Sakleshpura.		
Date of start	2021	Date of closur	e/ duration	3 years
Experimental de	tails	Crop variety: P	opular impro	ved variety of respective
		centre/area.		
				Treatments: 4; Replication: 5
				5: K ₂ O) for 6 q ha ⁻¹ yield
				for 8 q ha ⁻¹ yield
				for 10 q ha ⁻¹ yield
			-	er the state POP.
		Plot Size: 2 x 2	2m, 12 plants	per plot
Observation Rec	orded	 Growth par 		
		 Yield and i 	ts attributes	
		Quality attributes		
		Soil test analysis before and end of cropping season growth		
		Economics- BCR, gross returns, net returns		
Work done/achie	evements during	g 2023-24 (centr	re-wise)	
Mudigere	Experiment was laid out in RBD design with four treatments and five replications			
	Treatments we	Treatments were imposed as per the technical programme Among different		
				nt, number of panicles/clump and
				receiving 202 g Urea/clump + 200
		te/clump + 305		
Myladumpara	The maximum yield was obtained in T ₃ (108.55 kg / ha) followed by T ₃ (108.02			
				nificant. The maximum number of
				of panicles was in T ₃ and
	Maximum number of racemes per panicle and number of capsules per raceme			
D 1	was recorded from T ₃ .			
Pampadumpara				T_3 (255.786 cm) followed by T_3
	,			as observed in T_3 (42.542) chased
	by T_1 (41.458) and T_3 (41.354). More number of panicle was also recorded in T_3			
	[(19.2/1). Maxı	19.271). Maximum panicle length was registered in T ₃ (48.667 cm).		

Sakleshpura	Initiated the trial during 2021. Treatments were imposed as per the technical
	programme and preliminary observation on growth characters were recorded.
	Among different treatments significantly higher plant height (201 cm), number
	of panicles/clump (8.1) and capsule yield (62.1 g plant ⁻¹) was observed in
	treatment receiving 270.2: 250: 436.2 kg ha ⁻¹ - target yield - 8 q / ha (154.6 kg
	ha ⁻¹). On the contrary, significantly higher numbers of tillers (18.2) were recorded
	in treatment receiving 380.0:275.0:550.0 kg NPK/ha with a target yield of 10q/
	ha.

LARGE CARDAMOM

Project Code	LCA/CM/5.1	Project Title	Effect of mu	alching on yield of large cardamom
Centres	ICAR Gangtok, ICRI Gangtok			
Date of start	2021	Date of closure	e/ duration	3 years
Experimental details		Treatment details T ₁ - Leaf mould T ₂ - Fresh leaf litter T ₃ - Paddy straw T ₃ - Paddy husk T ₃ - Black polyethylene sheets T ₃ - Control Place of Experiment: At farmers' fields Design: RBD; replications: 4; Plot size/spacing: 4.5 x 4.5 m and		
Design: RBD; replications: 4; Plot size/spacing: 4.5 x 4.5 1.5 x1.5 m Plant height Number of leaves/tiller Number of productive tillers Leaf length Leaf breadth Number of days to flowering Number of spike/clump Number of spike/clump Number of spike/clump Number of spike/clump Number of capsule/spike Number of seed/capsule Fresh yield/ plant and per hectare Dry yield/plant and per hectare Physico - chemical parameters of soil : pH, nutrient status Diseases and insect pests (if any) Economics, BC ratio		ering rity r hectare nectare neters of soil : pH, nutrient		
Work done/achie ICAR Gangtok	Maximum number of immature tillers/clump and total number of tillers/clump were recorded under T ₁ which was significantly higher than other treatments, respectively. Except T ₂ , significantly maximum dry capsule yield was noticed under T ₁ as compared to other treatments.			

ICRI Gangtok	It was observed that T_1 shows the best result for number of productive tillers (8.5),
	number of spikes / clump (10.0) and capsules/spike (12.7). The yield was also
	found higher in T ₁ (203.0 g/clump and 812.1 kg ha ⁻¹). Treatment wise large
	cardamom samples were submitted for quality analysis and the result is awaited.

GINGER

Project Code	GIN/CM/4.1	Project Title	Evaluation of different ginger-based	
			intercropping systems for higher yield and	
Centres	Chintanalla D	holi ICAD Cor	income	
Centres	Chintapalle, Dholi, ICAR Gangtok, Kalyani, Mizoram, Nagaland, Pottangi, Pundibari, Solan.			
Date of start	2021-22	Date of closur	e/ duration 3 years (2021-22 to 2023-24)	
Experimental de	1	Treatments:	or duration c jours (2021 22 to 2020 2.)	
			iger	
 T₁- Sole ginger T₂- Ginger + Papaya + Leafy coriander (Grow papaya spacing of 180 x 180 cm. Between two lines of payaya will be sown in a spacing of 30 x 25 cm and leafy cowill be broadcasted in the border area. After harvest leafy coriander, the mulching will be done) T₃- Ginger + Banana (Grow banana with a spacing of 200 cm. Between two lines of banana ginger will be a spacing of 30 x 25 cm. Banana may be grown once years) T₃- Ginger + Coriander + leafy vegetables (Grow gin coriander in 2:2 ratio. After harvesting of coriander leafy vegetables in place of coriander T₃- Ginger + Maize (2:1 or 2:2) (Grow sweet corn in Rabi and Summer- 3 times) T₃- Ginger + French bean (2:2) (Grow French bean in Rabi and Summer- 3 times) T₇- Ginger + Arhar (3:1) (Grow arhar in Kharif) T₈- Ginger + Taro (2:2) (Grow taro in Kharif) Crop variety: Popular improved variety of respective area. 		+ Papaya + Leafy coriander (Grow papaya with a 80 x 180 cm. Between two lines of payaya ginger in in a spacing of 30 x 25 cm and leafy coriander adcasted in the border area. After harvesting of der, the mulching will be done) + Banana (Grow banana with a spacing of 200 x tween two lines of banana ginger will be sown in f 30 x 25 cm. Banana may be grown once in two + Coriander + leafy vegetables (Grow ginger and a 2:2 ratio. After harvesting of coriander, grow ables in place of coriander + Maize (2:1 or 2:2) (Grow sweet corn in Kharif, immer- 3 times) + French bean (2:2) (Grow French bean in Kharif, immer- 3 times) + Arhar (3:1) (Grow arhar in Kharif) + Taro (2:2) (Grow taro in Kharif) Popular improved variety of respective centre/		
Observation Rec	orded	Experimental design: RBD; Treatments: 8; Replications: 3Growth parameters		
	- :	 Yield and its attributes 		
		 Test weight of seed spices 		
		Essential oil of seed spices		
		Economics- BCR, Gross returns, net returns		
Work done/achie	Work done/achievements during 2023-24 (centre-wise)			
Chintapalle	Among different cropping systems, plant height (65.32 cm) was more in Ginger + Fenugreek (2:2) based cropping system, whereas number of tillers (11.40) were more in Ginger + Elephant foot yam (2:2). The highest fresh rhizome yield per plant (201.21 g) and yield (14.75 t ha ⁻¹) was recorded in ginger grown as sole crop followed by Ginger + Arhar (3:1) cropping system (10.51 t ha ⁻¹). The highest benefit cost ratio (13.48:1) was recorded in Ginger + Elephant foot yam followed by Sole Ginger (12.54:1).			

D1 1'	A 1'CC 4' 4 ' 1 C 1 C 1 1 '
Dholi	Among different intercrops viz., coriander, fenugreek, french bean, pigeonpea,
	maize, leafy vegetables and elephant foot yam taken with ginger, highest yield of
	ginger (6.84 t ha ⁻¹) was recorded in plot intercropped with elephant foot yam.
	Yield of ginger as sole crop was found 21.65 t ha ⁻¹ .
ICAR Gangtok	The results showed that significantly maximum ginger equivalent yield (28 t ha
	¹) and system productivity (34 t ha ⁻¹) was noticed under Ginger + Maize (2:1 or
	2:2) (Grow sweet corn in Kharif, Rabi and Summer- 3 times) ginger fenugreek
	intercropping system followed by Ginger + Taro (2:2) as compared to other sole
	and intercropping system.
Kalyani	In the 3 rd year (2023-24) the best combination was found in T ₃ i.e., Ginger +
	French Bean (2:2), closely followed by T ₇ i.e., Ginger + Elephant foot yam (2:2)
	& T ₃ i.e., (Ginger + coriander+ Leafy)
Mizoram	The result from the study indicated that a significant highest fresh weight of
	clump was recorded in ginger + french bean (2:2) intercropping (145.12 g) while
	the lowest was recorded in ginger + taro intercropping (74.39 g). The number of
	rhizomes was significantly highest in ginger + arhar (7.80) which was at par with
	ginger + taro (7.74) and ginger + fenugreek (7.71). The ginger yield was
	significantly highest in ginger + coriander + leafy vegetables (10.84 t ha ⁻¹)
	whereas the least was recorded in ginger + arhar (7.61 t ha ⁻¹). Significant highest
	intercrop fresh yield (9.83 t ha ⁻¹) was recorded in ginger + maize followed by
	ginger + taro (7.04 t ha ⁻¹). The crop equivalent yield (t ha ⁻¹) was highest in ginger
	+ maize (14.61 t ha ⁻¹) followed by ginger + coriander + leafy vegetables (14.32 t
	ha ⁻¹) and ginger + taro (11.92 t ha ⁻¹). The highest B:C ratio was recorded in ginger
	+ coriander + leafy vegetables (3.82) followed by ginger + maize (3.68) and
NT 1 1	ginger + taro (3.01) .
Nagaland	Out of the 7 treatment combinations, T ₁ -Sole ginger; T ₂ - Ginger+Fenugreek; T ₃ -
	Ginger+Coriander+leafy vegetables; T ₃ - Ginger+Maize (sweet corn)+ green
	mustard (laipata); T ₃ - Ginger+ French bean; T ₃ -Ginger+Tomato+Okra; T ₇ -
	Ginger+Colocasia, Plant height was recorded highest in T ₃ (54.33 cm) followed
	by T_3 (49.67 cm) and lowest height of the plant was recorded in T_3 (27 cm). The
	highest number of tillers was recorded in T_3 (7.33) followed by T_2 (7.00) and
	lowest was recorded in T ₃ (3.00). The fresh yield per clump and yield /ha was
	recorded highest in T ₁ (153.33g, 8.75 t ha ⁻¹) followed by T ₃ (95.67g, 6.92 t ha ⁻¹)
	respectively whereas, lowest yield was recorded in T ₃ (3.57 t ha ⁻¹). Highest BC
	ratio was recorded in T ₃ (2.56) followed by T ₁ (2.38) and lowest was recorded in
	T ₃ (1.99). Highest land equivalent ratio (LER) was recorded in T ₃ (3.29) followed
	by T7 (2.43) and lowest was recorded in T ₁ (1). Highest ginger equivalent yield
	(GEY) was recorded in T7 (16.14) followed by T ₁ (8.75) and lowest was recorded
	in T ₃ (1.30).
	Where, BCR: Benefit cost ratio, LER: Land equivalent ratio, GEY: Ginger equivalent
	yield
Pottangi	Return from coriander as inter crop in ginger was the highest followed by Maize
	in ginger .
Pundibari	From the analyzed data it is clear that maximum yield (12.86 t ha ⁻¹) of the main
	crop <i>i.e.</i> ginger was obtained in T ₁ treatment (sole ginger) and based on the B:C
	ratio of this trail, the maximum B:C ratio (3.16) was recorded in T ₇ treatment (T ₇ :
	Ginger + EFY - 2:2) followed by T ₃ treatment (T ₃ : Ginger + French bean -2:2)
	(2.43) and T ₃ treatment (2.41) (T ₃ : Ginger + Coriander + Leafy vegetable - 2:2).
Solan	Ginger variety "Solan Giriganga" intercropped with sweet corn over three crop-
	seasons: Summer, Kharif, and Rabi with a planting ratio 2:2 resulted in the best

yields for both ginger (186.25 q ha ⁻¹) and sweet corn (444.16 q ha ⁻¹). These crops
also gave the highest net returns per hectare (₹ 5,99,842) and had a B:C ratio of
2.05 under mid-hill conditions in Himachal Pradesh.

Project Code	GIN/CM/5.1	Project Title	Rhizobacteria, <i>Bacillus safensis</i> for phosphorus (P) solubilization potential in		
			ginger		
Centres	_	, Chintapalle, Kalyani, Kammarpally, Kumarganj, Pasighat, dibari, Raigarh			
Date of start	2020-21	Date of closure/ 3 years			
2 000 01 2001		duration			
Experimental de	tails	Treatments:	,		
		T ₁ - 100% reco	mmended phosphorus(P) fertilizer		
			phorus (P) fertilizer		
			phorus (P) fertilizer and Bacillus safensis		
			phorus (P) fertilizer		
			phorus (P) fertilizer and Bacillus <i>safensis</i>		
		T ₃ -Bacillus sa T ₇ -Control wi	,		
			Popular improved variety of respective		
		centre/area.	opular improved variety of respective		
			ntal design: RBD		
		Treatmen	_		
		Replication	ons: 4		
	Bed size: 3 x1m		3 x1m		
			15x30 cm; Total no. of beds: 28		
		Bacteria application as soil drench: At the time of			
		planting, 30 days after planting (DAP), 60 days after			
		planting (DAP)			
			Methodology: Fertilizer application: As per the		
		recommendation except P which may be taken up as			
		per the treatment			
Observation Rec	orded	• Growth parameters (90 & 120 DAP)			
		• Soil nutrients analysis –Available P & other major			
		&minor nutrients(120DAP)			
		Nutrient uptake (harvest)- Leaf and rhizome Nield and quality analysis			
		Yield and quality analysis			
Work donologhia	vyomonta dunina 1	• Economic			
Ambalavayal	evements during 2		ager, the treatment T_3 showed maximum fresh		
Ambalavayai			y recovery. Number of tillers was highest in T_1 .		
			evels were found to be the lowest in treatments		
	T ₃ and T ₇ among all the treatments.				
Chintapalli			rent treatments in ginger, application of 75%		
•	phosphorus (P) fertilizer and Bacillus safensis recorded more number of per clump (6.67), highest fresh weight of clump (165.00 g), highest fresh rl		9 9 11		
	yield per hectare(12.33 t ha ⁻¹), dry rhizome yield per hectare (2.66 t ha ⁻¹).				
Kalyani	Result showed that T ₃ (75% phosphorus(P) fertilizer and <i>Bacillus safensis</i>) is				
	found the best combination followed by T ₃ (50% phosphorus(P) fertilizer and				

	<i>Bacillus safensis</i>) and T ₁ (100% recommended phosphorus(P) fertilizer). The experiment is continuing in this year (2024-25). The health of the treated crop is satisfactory in the field.
Kammarpally	To evaluation of PGPR – Phosphorus in ginger, different treatments (T ₁ - 100% recommended phosphorus(P) fertilizer, T ₂ - 75% phosphorus(P) fertilizer, T ₃ - 75% phosphorus(P) fertilizer and Bacillus safensis, T ₃ - 50% phosphorus(P) fertilizer, T ₃ - 50% phosphorus(P) fertilizer and Bacillus safensis T ₃ - Bacillussafensis alone, T7-Control without P) were tested, among them T ₃ - 75% phosphorus(P) fertilizer and Bacillus safensis (9.41 t ha ⁻¹) followed by T ₁ -100% phosphorus (P) fertilizer (9.01 t ha ⁻¹) were found effective and recorded maximum yield when compare to control (5.89 t ha ⁻¹).
Kumarganj	Among the 7 different treatments tested for Evaluation of plant growth promoting rhizobacteria, <i>Bacillus safensis</i> for phosphorus (P) solubilization potential in ginger, Treatment T-3 (75% phosphorus fertilizer and <i>Bacillus safensis</i>) gave highest yield 85.00 q ha ⁻¹ followed by in treatment T-1 (100 % recommended phosphorus (P) fertilizer) 79.17 q ha ⁻¹ , T-5 (50% phosphorus fertilizer and <i>Bacillus safensis</i>) 77.50 q ha ⁻¹ , T-2 (75 % phosphorus (P) fertilizer) 75.00 q ha ⁻¹ , and T-7 (Control without P) gave lowest yield 65.42 q ha ⁻¹
Pasighat	This experiment was conducted with Nadia variety and treatments were applied as per the technical programme. Among the treatments, the highest plant height (32.46 cm, 41.72 cm) at 90 and 120 days after planting, respectively, was recorded in T ₃ (75% P + <i>Bacillus safensis</i>) followed by T ₁ (100% P) with a plant height of 27.57 cm and 36.43 cm at 90 & 120 DAP, respectively. Number of tillers/clump was maximum in T ₃ with 2.60 & 3.55 tillers/clump at 90 and 120 DAP, respectively. Similarly, number of leaves was also found to be highest in T ₃ with 9.95 & 11.85 number of leaves at 90 and 120 DAP, respectively. As far as yield parameters is concerned, highest yield/clump (125.90 g) was found in T ₃ and the projected yield per hectare was also found to be highest in T ₃ (12.14 t ha ⁻¹) and the lowest yield in control (7.14 t ha ⁻¹)
Pottangi	Application of P solubilization (16.1t ha ⁻¹) gave 15.9% higher yield than control (13.9 t ha ⁻¹) in Suprabha.
Pundibari	In this trial, effects of plant growth promoting rhizobacteria, <i>Bacillus safensis</i> for phosphorus (P) solubilizing potential, seven (7) treatments were evaluated. Analysis of the data revealed that the maximum number of tillers per plant (12.15) and fresh yield (17.93 t ha ⁻¹) were recorded in T ₃ (75% recommended phosphorus fertilizer and <i>Bacillus safensis</i>) followed by T ₃ (50% recommended phosphorus fertilizer and <i>Bacillus safensis</i>) and T ₁ (100% recommended phosphorus fertilizer). Whereas, all the parameters were found to be lowest in T ₇ (Control i.e. without P fertilizer). Dry rhizome yield (3.67 t ha ⁻¹) was also recorded maximum in T ₃ treatment.
Raigarh	Maximum plant height 50 DAS (29.53 cm) and 120 DAS (52.53 cm) and maximum yield 15.46 t /ha found in 100 % recommended phosphorus (P) fertilizer (T ₁).

Project Code	GIN/CM/5.2	Project Title	Evaluation of Plant Growth Promoting	
			Rhizobacteria, Bacillus safensis for zinc (Zn)	
			solubilization potential in ginger	
Centres	Chintapalle, Kalyani, Kammarpally, Kumarganj, Pasighat, Pottangi, Raigarh			

Date of start	2020-21	Date of closure/ 3 years duration	
Experimental details		Treatments:	
•		T ₁ - 100% recommended zi T ₂ - 50% zinc (Zn) fertilize T ₃ - 50% zinc (Zn) fertilize T ₃ - Bacillus safensis alone	er and <i>Bacillus safensis</i> er alone
		T ₃ - control without Zn	
			roved variety of respective
		centre/area.	
		• Experimental design:	RBD
		• Treatments: 5	
		• Replication: 5	
		• Bed size: 3 x1m	S. 1 25
		• Spacing: 15x30 cm; T	
		the time of planting, 3 days after planting (D	
		1	As per the recommendation
Observation Recorded		minor nutrients (120D)Nutrient uptake (harve)Yield and quality anal	-Available Zn & other major & OAP) est)- Leaf and rhizome
		• Economics	
Work done/achie Chintapalli	It was observed the (Zinc (Zn) fertilized in grams (176.45)	er and Bacillus safensis recor	ents in ginger, application of 50% rded highest fresh weight of clump is per clump (8.65), fresh rhizome eld per hectare (3.04 t ha ⁻¹).
Kalyani	Result showed that T_2 (50% zinc (Zn) fertilizer and <i>Bacillus safensis</i>) is found the best combination followed by T_1 (100% recommended zinc (Zn) fertilizer) and T_3 (50% zinc (Zn) fertilizer alone). The experiment has been continuing in this year (2024-25) and the progress is satisfactory. Ginger has been planted after		
TZ 11		er scheduled programme.	1.0 '71 (' ' ' ' ' 11.1
Kammarpally	Among treatments, T ₂ (50% Zinc (Zn) fertilizer and <i>Bacillus safensis</i>) yielded the highest at 11.22 t ha ⁻¹ , followed by T ₁ (100% recommended Zinc (Zn) fertilizer) with a yield of 9.8 t ha ⁻¹ . Both treatments significantly outperformed the control, which recorded a yield of only 6.21 t ha ⁻¹ .		
Kumarganj	In Evaluation of plant growth promoting rhizobacteria, <i>Bacillus safensis</i> for zinc (Zn) solubilizationpotentialin ginger, out of 5 different tested treatments, treatment T-2 (50 % Zn fertilizer and <i>Bacillus safensis</i>) gave highest yield (86.67 q ha ⁻¹) followed by T-1 (100 % recommended zinc (Zn) fertilizer) 78.33 q ha ⁻¹ , T-3 (50% zinc (Zn) fertilizer alone) 72.67 q ha ⁻¹ , T-4 (<i>Bacillus safensis</i> alone) 66.333 q ha ⁻¹ and lowest yield found in treatment T-5 (Control without Zn) 62.47 q ha ⁻¹ .		
Pasighat	This experiment vas per the technica	al programme. Among the tr	reatments, the highest plant height after planting, respectively, was

	recorded in T_2 (50% $P+Bacillus\ safensis$) followed by T_1 (100% Zn) with a plant height of 32.86 cm and 37.44 cm at 90 & 120 DAP, respectively. Number of tillers/clump was maximum in T_2 with 2.6 & 3.44 tillers/clump at 90 and 120 DAP, respectively. Similarly, number of leaves was also found to be highest in T_2 with 9.56 & 12.12 number of leaves at 90 and 120 DAP, respectively. As far as yield parameters is concerned, highest yield/clump (123.08 g) was found in T_2 and the projected yield per hectare was also found to be highest in T_2 (12.51 t ha ⁻¹) and the lowest yield in control (7.47 t ha ⁻¹).
Pottangi	Application of Zn solubilization (16.7t ha ⁻¹) gave 13.7% higher yield than control (14.7t ha ⁻¹) in Suprabha.
Raigarh	Maximum plant height 50 DAS (26.56 cm) and 120 DAS (50.47) and maximum yield 14.38 t ha ⁻¹ in treatment 100% recommended zinc (Zn) fertilizer (T ₁) 100 percent recommended zinc fertilizer @ 5 kg ha ⁻¹ .

TURMERIC

Project Code	TUR/CM/5.1	Project Title	Evaluation	of Plant Growth Promoting
Troject Code	1010/01/1/5.1	Troject Title	Rhizobacte	
				s (P) solubilization potential in
			turmeric	s (1) solubilization potential in
Centres	Chintanalla C	oimbatara Kal		voni Kommornolly Kozhikodo
Centres	_	Chintapalle, Coimbatore, Kahikuchi, Kalyani, Kammarpally, Kozhikode Pasighat, Pottangi, Pundibari, Raigarh, Solan		
Date of start	2020-21	Date of closur		3 years
Date of start	2020-21	duration	. e/	3 years
T	_			
Experimental detail	S	Treatments:	1 1 1	1 (D) C ('I'
			-	nosphorus(P) fertilizer
		T ₂ - 75% phosp		
				ertilizer and Bacillus safensis
		T ₃ - 50% phosp		
				ertilizer and Bacillus safensis
		T ₃ - Bacillus so		
		T ₇ - Control without P		
		Crop variety: Popular improved variety of respective		
		centre/area.		
		Experimental design: RBD		
	Treatment	ts: 7		
		Replications: 4		
		Bed size:	3 x1m	
		• Spacing: 1	15x30 cm: T	otal no. of beds: 28
		Methodology: Bacteria application as soil drench: At the		
				fter planting (DAP), 60 days after
		planting (DAP	-	7, 3 3, 5
		1 0	*	As per the recommendation
				e taken up as per the treatment
		скеері і	vincii inay o	e taken up as per the treatment
Observation Record	led	Growth na	arameters (90	0 & 120 DAP)
		_		-Available P & other major
			utrients(1201	•
				est)- Leaf and rhizome
			•	ysis Economics
		• Held and	quanty anal	ysis economics

Work done/achiev	vements during 2023-24 (centre-wise)
Chintapalli	It was observed that among different treatments in turmeric, application of 75% phosphorus (P) fertilizer and <i>Bacillus safensis</i> recorded more number of tillers per clump (1.67), highest fresh weight of clump (248.70 g), fresh rhizome yield per hectare (26.42t ha ⁻¹) and dry rhizome yield per hectare (7.12 t ha ⁻¹).
Coimbatore	The trial was initiated with seven treatments including <i>Bacillus safensis</i> and Phosporus fertilizer alone and in combination. First dose of bacterial application was done by soil drenching at the time of planting. Among the seven treatments T ₃ recorded (75% Phosphorus fertiliser + <i>Bacillius safensis</i>) more fresh weight per clump (299.5g) and fresh rhizome yield per hectare (24.95 t ha ⁻¹) followed by T ₃ (50% Phosphorus fertiliser + <i>Bacillius safensis</i>) 287.5g fresh weight per clump and fresh rhizome yield per hectare (23.25t ha ⁻¹)
Kahikuchi	Treatment T ₃ (75% Phosphorus(P) fertilizer and Bacillus safensis) recorded the highest plant height (175.65 cm) followed by followed by 166.73 cm in T ₃ (50% phosphorus (P) fertilizer and Bacillus safensis). Similarly T ₃ (75% Phosphorus(P) fertilizer and Bacillus safensis) also recorded maximum number of shoots per plant (5.97 no.), petiole length (39.31 cm) and longest lamina length (80.63 cm) followed by T ₃ (50% phosphorus (P) fertilizer and Bacillus safensis) 5.67 cm, 38.79 cm and 80.23 cm, respectively. However, number of leaves in main shoot was recorded highest (9.65 no.) in T ₃ (50% phosphorus (P) fertilizer and Bacillus safensis). Fresh rhizome yield was recorded highest in T ₃ (27.49 t ha ⁻¹) followed by T ₃ (26.83 t ha ⁻¹). Similarly, curcumin content was found highest in T ₃ (5.63%). Leaf rhizome and soil analysis are on progress.
Kalyani	Result showed that T ₃ (75% phosphorus(P) fertilizer and Bacillus safensis) is found the best combination followed by T ₃ (50% phosphorus(P) fertilizer and Bacillus safensis) and T ₁ (100% recommended phosphorus(P) fertilizer). The experiment is continuing in this year (2024-25). The health of the treated crop is satisfactory in the field.
Kammarpally	To evaluate solubilization of PGPRs in turmeric, different treatments (T ₁ -100% recommended phosphorus(P) fertilizer, T ₂ - 75% phosphorus (P) fertilizer, T ₃ - 75% phosphorus(P) fertilizer and Bacillus safensis, T ₃ - 50% phosphorus(P) fertilizer, T ₃ - 50% phosphorus (P) fertilizer and Bacillus safensis T ₃ -Bacillus safensis alone, T ₇ -Control without P) were tested, among them T ₃ - 75% phosphorus(P) fertilizer and Bacillus safensis (29.28 t ha ⁻¹) followed by T ₁ -100% recommended phosphorus (P) fertilizer (28.53 t ha ⁻¹) were found effective and recorded maximum yield when compare to control (18.25 t ha ⁻¹).
Kozhikode	Among the treatments, the one with 75% P + B. safensis registered significantly (P < 0.05) higher rhizome yield and the increase was greater by 46.5% and 58.0 % compared to control (100% P) and absolute control. With regard to soil available P, the levels were significantly (P < 0.05) higher in all the treatments involving combined application of B. safensis with 50% or 75% or 100% P. Higher microbial activity in B. safensis treatment was confirmed with the observation on dehydrogenase, which registered marked greater levels in B. safensis + 75% P and corresponding increase in acid phosphatase activity was 26.5% higher compared to 100% P.

Pasighat	This experiment was conducted with NDH-98 variety and treatments were applied as per the technical programme. Among the treatments, the highest plant height (66.18 cm, 98.81 cm) at 90 and 120 days after planting, respectively, was recorded in T ₃ (75% P + <i>Bacillus safensis</i>) followed by T ₁ (100% P) with a plant height of 59.75 cm and 93.75 cm at 90 & 120 DAP, respectively. Number of tillers/clumps was maximum in T ₃ with 2.50 & 3.65 tillers/clump at 90 and 120 DAP, respectively. Number of leaves was also found to be highest in T ₃ with 6.20 & 6.90 number of leaves at 90 and 120 DAP, respectively. As far as yield parameters is concerned, highest yield/clump (199.02 g) was found in T ₃ and the projected yield per hectare was also found to be highest in T ₃ (18.22 t ha ⁻¹) and the lowest yield in control (11.66 t ha ⁻¹)
Pottangi	Application of P solubilization (22.2t ha ⁻¹) gave 13.8% higher yield than control (19.5t ha ⁻¹) in Roma.
Pundibari	In this trial, effects of plant growth promoting Rhizobacteria, <i>Bacillus safensis</i> for phosphorus (P) solubilizing potential, seven (7) treatments were evaluated. Analysis of the data revealed that the maximum plant height (99.1 cm), highest number of tillers per plant (3.10) and fresh rhizome yield (28.37 t ha ⁻¹) were recorded in T ₃ (75% recommended phosphorus fertilizer and <i>Bacillus safensis</i>) followed by T ₃ (50% recommended phosphorus fertilizer and <i>Bacillus safensis</i>) and T ₁ (100% recommended phosphorus fertilizer). Whereas, all the parameters were found to be lowest in T ₇ (Control <i>i.e.</i> without phosphorus fertilizer). Dry rhizome yield (5.17 t ha ⁻¹) was also recoreded maximum in T ₃ treatment.
Raigarh	Maximum Plant height 50 DAS (55.42cm) and 120 DAS (102.70cm) and maximum yield 24.85 t /ha found in treatment T ₃ .
Solan	Turmeric Variety <i>Palam Lalima</i> drenched with plant growth promoting rhizobacteria <i>Bacillus safensis</i> and application of 37.5 kg ha ⁻¹ P ₂ O ₅ fertilizer gave the highest yield (277.93 q ha ⁻¹) along with maximum net returns (₹ 4,20,754) and B:C ratio (1.54) under mid hill conditions of Himachal Pradesh.

Project Code	TUR/CM/5.2	Project Title	Evaluation	on of Plant Growth Promoting		
Troject couc	1010,0101,5.2	Troject Title		cteria, Bacillus safensis for zinc		
				bilization potential in turmeric		
<u> </u>	G1 1 11 G			*		
Centres	-			i, Kalyani, Kammarpally, Kanke,		
	Kozhikode, Ku	marganj, Pasigha	t, Pottangi	, Pundibari, Raigarh		
Date of start	2020-21	Date of closure	/	3 years		
		duration				
Experimental details		Treatments:				
		T ₁ - 100% recom	mended z	inc (Zn) fertilizer		
		T ₂ - 50% Zinc (Zn) fertilizer and Bacillus <i>safensis</i>				
	T ₃ - 50% Zinc (Zn) fertilizer alone					
	T ₃ - Bacillus safensis alone					
		T ₃ - Control without Zn				
		Crop variety: Popular improved variety of respective				
				centre/area.		
	Experimental design: RBD					
	• Treatments: 5					
				• Replication: 5		
		• Bed size: 3	x1m			

Observation Recorded Work done/achievemen	 Spacing: 15x30 cm; Total no. of beds: 25 Methodology: Bacteria application as soil drench: At the time of planting, 30 days after planting (DAP), 60 days after planting (DAP) Fertilizer application: - As per the recommendation Growth parameters (90 & 120 DAP) Soil nutrients analysis –Available Zn & other major & minor nutrients (120DAP) Nutrient uptake (harvest)- Leaf and rhizome Yield and quality analysis Economics ts during 2023-24 (centre-wise)
Chintapalli	It was observed that among different treatments in turmeric, application
•	of 50% Zinc fertilizer and Bacillus safensis recorded more number of tillers per clump (1.48), fresh weight of clump in grams (262.51 g), fresh rhizome yield per hectare(24.10 t ha ⁻¹).
Coimbatore	The trial was initiated with seven treatments including <i>Bacillus safensis</i> and Zinc fertilizer alone and in combination. All the doses of bacterial application were done by soil drenching at the time of planting, 30 Dap and 60 DAP as per the treatment schedule. Among the treatments, the treatment T_2 (50% Zinc fertilizer + <i>Bacillus safensis</i>) recorded more fresh weight per clump (229.58g) and fresh rhizome yield per hectare (23.08t ha ⁻¹)
Dholi	Among the treatments, highest significant turmeric (Var., Rajendra Sonali) yield of 51.24 t ha ⁻¹ was recorded in the treatment, T ₂ - 50% Zinc (Zn) fertilizer and <i>Bacillus safensis</i> over control (46.70 t ha ⁻¹).
Kahikuchi	Treatment T ₁ (100% recommended zinc fertilizer) recorded the highest plan height (167.59 cm), number of leaves at main shoot (8.63), maximum number of shoots (5.97 no.) per clump and longest lamina length (78.13 cm). However longest petiole length (37.54 cm) was recorded by T ₂ - 50% zinc (Zn) fertilizer and <i>Bacillus safensis treatments</i> . Fresh rhizome yield was recorded highest in T ₂ (23.47 t ha ⁻¹) followed by T ₃ (22.41 t ha ⁻¹). Similarly, Curcumin content was found highest in T ₁ (5.45%) followed by T ₂ (5.21%). Leaf rhizome and soil analysis are on progress.
Kalyani	Result showed that T_2 (50% zinc (Zn) fertilizer and <i>Bacillus safensis</i>) is found the best combination followed by T_1 (100% recommended zinc (Zn) fertilizer) and T_3 (50% zinc (Zn) fertilizer alone). The experiment has been continuing in this year (2024-25) and the progress is satisfactory. Turmeric has been planted after soil treatment as per scheduled programme.
Kammarpally	To evaluate PGPRs in ginger, different treatments (T ₁ -100% recommended Zinc (Zn) fertilizer, T ₂ - 50% Zinc (Zn) fertilizer and Bacillus safensis T ₃ - 50% Zinc (Zn) fertilizer alone, T ₃ - Bacillus safensis alone, T ₃ - control without Zn) were tested among them T ₂ - 50% Zinc (Zn) fertilizer and Bacillus safensis (39.52 t ha ⁻¹) followed by T ₁ -100% recommended Zinc (Zn) fertilizer (38.49 t ha ⁻¹) were found effective and recorded maximum yield when compare to control (25.41 t ha ⁻¹)

Kumarganj	In Evaluation of plant growth promoting rhizobacteria, <i>Bacillus safensis</i> ,
Tramar gang	for zinc (Zn) solubilization potential in turmeric, out of 5 different
	treatments tested in turmeric, treatment T-2 (50 % Zn fertilizer and
	Bacillus safensis) gave highest yield 327.33 q ha ⁻¹ hollowed by in
	decreasing order found yield in treatment T-1 (100 % recommended zinc
	(Zn) fertilizer) 310.67 q ha ⁻¹ , T-3 (50% zinc (Zn) fertilizer alone) 298.67
	q ha ⁻¹ , T-4 (<i>Bacillus safensis</i> alone) 291.33 q ha ⁻¹ and in Treatment T-5
	(Control without Zn) 275.33 q ha ⁻¹ .
Kanke	Fresh rhizome yield and its attributing characters of Turmeric were
	increased significantly by the application of Zn fertilizer and Zn
	solubilizing bacteria. Fresh rhizome yield was found maximum (36.484 t
	ha ⁻¹) by application of 5 kg ha ⁻¹ Zinc sulfate (hydrated) as recommended
	dose which was at par with 50% Zinc (Zn) fertilizer and Bacillus safensis
	(T_2) and as 34.096 t ha ⁻¹ and use of Bacillus safensis alone (T_3) as 32.844
	t ha ⁻¹ . Other parameters were in same line. However, Dry recovery was
	not affected significantly
V a aladir a da	Č
Kozhikode	Among the treatments, combined application of <i>Bacillus safensis</i> with
	different levels of ZnSO ₄ significantly increased the number of tillers,
	shoot length, number of leaves, dry root weight and shoot weight
	compared to application of 100% ZnSO ₄ and absolute control. With
	regard to soil available Zn, the levels were significantly higher in all the
	treatments involving combined application of <i>B. safensis</i> with 50% or
	75% or 100% ZnSO ₄ . B. safensis + 75% ZnSO ₄ recorded significantly
	higher soil available Zn $(6.36 \pm 0.14 \text{ mg kg}^{-1})$. Among the treatments,
	application of 75% ZnSO4 + B . safensis registered significantly higher
	fresh rhizome yield and the increase was 147.97% and 93.28 % compared
	to control (100% ZnSO ₄) and absolute control, respectively. Rhizome rot
	disease incidence was not observed in turmeric treated with combined
	application of <i>B. safensis</i> with 50% or 75% or 100% ZnSO ₄ , compared to
	treated control and absolute control.
Pasighat	This experiment was conducted with NDH-98 variety and treatments
	were applied as per the technical programme. Among the treatments, the
	highest plant height (63.27 cm, 86.70 cm) at 90 and 120 days after
	planting, respectively, was recorded in T ₂ (50% P + Bacillus safensis)
	followed by T ₁ (100% Zn) with a plant height of 59.85 cm and 83.43 cm
	at 90 & 120 DAP, respectively. Number of tillers/clump was maximum
	in T ₂ with 2.52 & 3.20 tillers/clump at 90 and 120 DAP, respectively.
	Similarly, number of leaves was also found to be highest in T ₂ with 6.24
	& 8.02 number of leaves at 90 and 120 DAP, respectively. As far as yield
	parameters is concerned, the the highest yield/clump (168.62 g) was
	found in T ₂ and the projected yield per hectare was also found to be
	highest in T ₂ (16.32 t ha ⁻¹) and the lowest yield in control (9.19 t ha ⁻¹)
Pottangi	Application of Zn solubilization (22.9t ha ⁻¹) gave 19.7% higher yield than
-	control (19.1t ha ⁻¹) in Roma.
Pundibari	In this trial, effects of plant growth promoting rhizobacteria, <i>Bacillus</i>
i ununuan	safensis for phosphorus (Zn) solubilizing potential, five (5) treatments
	were evaluated. Analysis of the data revealed that the maximum number
	•
	of tillers per plant (3.12) and fresh rhizome yield (28.01 t ha ⁻¹) were
	recorded in T ₂ (50% recommended zinc fertilizer and <i>Bacillus safensis</i>)

	followed by T ₁ (100% recommended zinc fertilizer). Whereas, all the parameters were found to be lowest in T ₇ (Control without zinc fertilizer).
Raigarh	Maximum Plant height 50 DAS (56.42 cm) and 120 DAS (106.71cm) and maximum yield (25.31 t /ha) found in treatment T ₁

TREE SPICES

Project Code	TSP/CM/5.1	Project Title	Site-Specific		Management	in
Centres	Vellanikkara,	Nutmeg (<i>Myristica fragrans</i>) Kozhikode, Dapoli and Coimbatore				
Date of start	2026	Date of closure/ duration Three years				
Experimental details		 Treatments: 5 Site-specific soil test-based nutrient application Site-specific soil test based 100% of their nutrient application through fertigation Site-specific soil test based 75 % of their nutrient application through fertigation Site-specific soil test based 50 % of their nutrient application through fertigation 				
Observations Re	ecorded	2. Averag 3. Numbe 4. Averag 5. Fruit le 6. Fruit b 7. Fruit w 8. Mace w 9. Mace w 10. Nut we 11. Nut we 12. Kernel 13. Numbe 14. Numbe 15. Fresh a 16. Fresh a 17. Fresh a 18. Kernel 19. Volatile 20. Oleore 21. Fixed c 22. Mace a 23. Volatile	1. Average height (cm) 2. Average girth (cm) 3. Number of branches 4. Average spread (m) 5. Fruit length (cm) 6. Fruit breadth (cm) 7. Fruit weight (fresh) (g) 8. Mace weight (fresh) (g) 9. Mace weight (dry) (g) 10. Nut weight (fresh) (g) 11. Nut weight (dry) (g) 12. Kernel weight (dry) (g) 13. Number of fruits per m² 14. Number of fruits per tree 15. Fresh and dry nut yield per tree (kg) 16. Fresh and dry mace yield per tree (kg) 17. Fresh and dry mace yield per tree (kg) 18. Kernel analysis: 19. Volatile oil (%) 20. Oleoresin (%) 21. Fixed oil (%) 22. Mace analysis:			
		24. Oleoresin (%)				
	Work done/achievements during 2023-24 (centre-wise)					
All Centres	Centres have finallised the site of experiment. Ready to start the experiment					

CORIANDER

Project Code	COR/CM/5.1	Project Title		yield of Coriander as influenced by	
Centres	Aimer Coimb	AMF (Arbuscular Mycorrhizal Fungi) ttore, Dholi, Guntur, Jabalpur, Kota			
		* * * * * * * * * * * * * * * * * * * *			
Date of start	2022-23			,	
Experimental de	tails			ctorial RBD; Replication: 3	
		Treatment combinations: 9 + 1 control (absolute control)			
		T ₁ : 100% RDP with Seed treatment			
		T ₂ : 75% RDP with Seed treatment			
		T ₃ : 50% RDP with Seed treatment			
				olication (20 DAS @ 5 kg acre ⁻¹)	
				ication (20 DAS @ 5 kg acre ⁻¹)	
				ication (20 DAS @ 5 kg acre ⁻¹)	
				eatment (@ 100g per kg of seed) at	
		the time of sow	ing, and Soil	application (20 DAS @ 5 kg acre	
		T ₈ : 75% RDP v	with Seed trea	tment with Seed treatment (@	
		0 1		me of sowing, and Soil application	
		(20 DAS @ 5 l	kg acre ⁻¹)		
				tment (@ 100g per kg of seed) at	
			ing, and Soil	application (20 DAS @ 5 kg acre	
		1)			
		C- Control (water spray)			
		Crop variety: Popular improved variety of respective			
		centre/area.			
• Plot six		• Plot size &	Crop spacing	: 4 x 2.4 m, Spacing- 30 x 10 cm	
Observations Re	corded	1. Vigour (Pla	_		
		2. No. of days			
		3. No. of primary branches/plant			
		4. No. of secondary branches/plant			
		5. No. of umbels/plant			
		6. No. of umbellets/umbel			
		7. No. of seeds/umbel			
		8. Duration (No. of days to maturity)			
		9. Yield (q ha ⁻¹)			
		10. Essential oil (%)			
		11. Soil and plant P uptake			
***	4 3 •	12. Economics).	
Work done/achie				100.0/	
Ajmer				100 % recommended P gave 961.2,	
seed treatment Maximum see application of		99.8 kg ha ⁻¹ seed yield whereas among AMF application methods, t along with soil application gave 1155.1 kg ha ⁻¹ seed yield.			
				f coriander was recorded with the t of coriander with AMF@100g/kg	
				tion AMF @5 kg/acre 20 days after	
	sowing.	inc or sowing al	a son appnea	anon ravin & 3 kg/acte 20 days after	
Dholi		atments compris	sing of annlic	ation of different phosphorus level	
DIIOII	Among ten treatments comprising of application of different phosphorus level and mode of application of VAM, maximum yield (1978.30 kgha ⁻¹) was recorded				
	and mode of ap	prication of VAI	v1, 111a/1111ulll	yicia (1770.30 kgiia) was iccolucu	

	in treatment, 100% RDF + seed treatment @25 g/kg of seed and soil application
	- 20 days after sowing @ 12.5kg/ ha against control (1623.70 kgha ⁻¹).
Guntur	During 2023-24, Effect of various levels of Phosphorus in combination with
	various application mode of AMF (Arbuscular mycorrhizal fungi) revealed that
	75%RDP + ST + SOT (1293.00 kg ha ⁻¹), 100% RDP (Recommended dosage of
	Phosphorus) in combination with seed treatment (ST) and soil treatment (SOT)
	of AMF recorded higher yields of 1268.00 kg ha ⁻¹ followed by 100% RDP + ST
	(1256.00 kg ha ⁻¹) and were on par with one another and significantly superior to
	the absolute control (804 kg ha ⁻¹).
Jabalpur	The experiment was conducted using a Factorial Randomized Block Design with
	two factors: Phosphorus level (100% RDP, 75% RDP, 50% RDP, and 0% RDP)
	and Mode of application (Seed treatment at 100 g/kg of seed, Soil application 20
	days after sowing at 5 kg/acre, and Seed treatment + Soil application). The
	highest plant height (112.82 cm) was observed in the treatment T6 (75% RDP
	combined with seed treatment and soil application), followed by T4 (75% RDP
	and seed treatment). The highest seed yield (16.95 q/ha) and a harvest index of
	30.28 were reported in Treatment T5 (75% RDP and soil application of VAM at
	20 DAS).
Kota	Due to delayed receipt of AMF culture, this trial was sown in 1 st week of January,
	2023, therefore, growth parameters, yield attributes and yield of coriander was
	drastically affected.

Project Code	COR/CM/6.1	Project Title	Effect of gro	owth regulators on yield and quality
			of Coriander	r
Centres	Coimbatore, G	untur, Hisar, Jabalpur, Jobner, Kota, Raigarh		
Date of start	2022-23	Date of closure	e/ duration	Three years
Experimental de	tails	Experiment	tal design: RE	BD; Replication: 3
		Treatment com	binations: 8	
		T ₁ : Salicylic ac	eid @ 50 ppm	
		T ₂ : Salicylic ac	eid @ 100 ppr	n
		T ₃ : Jasmonic a	cid @ 50 ppm	1
		T ₃ : Jasmonic a	cid @ 100 pp:	m
		T ₃ : Benzyl ade		
		T ₃ : Benzyl ade		
		T ₇ : Brassinoste	-	· -
		T ₈ : Brassinosteroid @ 1.00 ppm		
		C: Control (water spray)		
		Crop variety: Popular improved variety of respective		
		centre/area.		
				g: 4 x 2.4 m, Spacing- 30 x 10 cm
Observation Rec	orded	1. Vigour (Plant height in cm)		
		_	s to 50% flow	•
		3. No. of primary branches/plant		
		4. No. of secondary branches/plant		
		5. No. of umbels/plant		
		6. No. of umbellets/umbel		
		7. No. of seeds/umbel		
		8. Duration (No. of days to maturity)		
		9. Yield (q ha ⁻¹)		
		10. Essential of	il (%)	

	11. Economics and B:C ratio
Work done/a	chievements during 2023-24 (centre-wise)
Hisar	The significant differences were obtained for all the treatments. Maximum Umbels per plant (53.2) and seed yield (1993.6 kg ha ⁻¹) was recorded with the application of Benzyl adenine @ 20 ppm which is being at par with spray of Benzyl adenine @ 10 ppm (1966.3 kg ha ⁻¹).
Guntur	During 2022-23, among the different growth regulators evaluated, Salicylic acid @ 50 ppm (1258.00 kg ha ⁻¹) followed by Benzyl Adenine @ 10 ppm (1207.3 kg ha ⁻¹), Salicylic acid @ 100 ppm (1204.30 kg ha ⁻¹), Jasmonic acid @ 50 ppm (1165.70 kg ha ⁻¹) and Jasmonic acid @ 50 ppm (1127.6 kg ha ⁻¹) were on par with one another and significantly superior to the control (1000.3 kg ha ⁻¹).
Jabalpur	Using four plant growth regulators viz., Salicylic acid, Jasmonic acid, Benzyl adenine, and Brassinosteroid, in different concentrations with water spray as the control, the experiment was laid out using Randomized Block Design with three replications. The spraying was done at 30 DAS and 60 DAS. The findings revealed foliar-applied PGRs has significant result in treatments. BR@ 0.5ppm and JA@ 50ppm showed highest value in growth parameters whereas JA@ 50ppm and BA@ 20ppm has maximum value in yield parameters. In Quality analysis, volatile oil increases in BA@ 20ppm and highest ascorbic acid is obtained in BR@ 0.5ppm. The highest B:C ratio was recorded in plant treated with BA@ 20ppm.
Jobner	The nine treatments consisted of spray of different growth regulators were evaluated in RBD with 3 replications in a plot size of 4.0 x 2.4 m² with crop geometry of 30 x 10 cm. The crop was sown on 05.11.2023. The crop variety was RCr-728. The results showed that different modern growth regulators viz., salicylic acid @ 50 ppm, salicylic acid @ 100 ppm, jasmonic acid @ 50 ppm, jasmonic acid @ 50 ppm, benzyl adenine @ 10 ppm, benzyl adenine @ 20 ppm, brassinosteroid @ 0.50 ppm, brassinosteroid @ 1.0 ppm significantly increased growth parameters, yield attributes, yield, economics and qualityof coriander over control.
Kota	The growth, yield attributes and yield of coriander was influenced by different growth regulators as compared to control (water spray). Among the different growth regulators, application of T ₂ (Salicylic acid @ 100 ppm) gave the highest growth parameters, yield attributes and seed yield of coriander.
Raigarh	Among the different growth regulators, earliest flowering (50% & 100% flowering) was recorded at 40.25 and 49.5 DAS in treatment of Benzyl adenine @ 20 ppm as well as highest yield (2135.80 kg ha ⁻¹) and test weight followed by T ₁ , T ₂ , T ₇ in terms of flowering but as per yield T ₈ (1759.26 kg ha ⁻¹) was recorded after T ₃ .

FENUGREEK

Project Code	FGK/CM/5.1	Project Title Growth and yield of fenugreek as influenced by		
			AMF (Arbu	scular Mycorrhizal Fungi)
Centres	Dholi, Guntur, Kota, Mandor, Jabalpur			
Date of start	2022-23	Date of closur	e/ duration	Three years
Experimental details		• Experimental design: Factorial RBD; Replication: 3		
		<u>Treatment combinations: 9 + 1 control (absolute control)</u>		
		T ₁ : 100% RDP with Seed treatment		
		T ₂ : 75% RDP with Seed treatment		

		T ₃ : 50% RDP with Seed treatment		
		T ₃ : 100% RDP with Soil application (20 DAS @ 5 kg acre ⁻¹)		
		T ₃ : 75% RDP with Soil application (20 DAS @ 5 kg acre ⁻¹)		
		T ₃ : 50% RDP with Soil application (20 DAS @ 5 kg acre ⁻¹)		
		T ₇ : 100% RDP with Seed treatment (@ 100g per kg of seed) at		
		the time of sowing, and Soil application (20 DAS @ 5 kg acre-		
		$\binom{1}{2}$		
		T ₈ : 75% RDP with Seed treatment with Seed treatment (@		
		100g per kg of seed) at the time of sowing, and Soil application		
		(20 DAS @ 5 kg acre ⁻¹)		
		T ₉ : 50% RDP with Seed treatment (@ 100g per kg of seed) at		
		the time of sowing, and Soil application (20 DAS @ 5 kg acre ⁻¹)		
		C- Control (water spray)		
		 Crop variety: Popular improved variety of respective 		
		centre/area.		
Observations Re	aandad	 Plot size & Crop spacing: 4 x 2.4 m, Spacing- 30 x 10 cm Plant height (cm) 		
Observations Re	ecorueu			
		2. No. of days to 50% flowering3. No. of pods/plant		
		4. Length of pod (cm)		
		5. No. of seeds/pod		
		6. Weight of 1000 seeds7. Duration		
		8. Yield (q ha ⁻¹)		
		9. Diosgenin content (mg 100-g)		
		10. Soil and plant P uptake 11. Economics and B:C ratio		
Work dono/ochie	ovements during			
Dholi		g 2023-24 (centre-wise)		
Diloii	Among ten treatments comprising of application of different phospho			
		oplication of VAM, maximum yield (1880.54 kgha ⁻¹) was recorded 00% RDF + seed treatment @25 g/ kg of seed and soil application		
		,		
Vata		sowing @ 12.5kg/ ha against control (1526.79 kgha ⁻¹).		
Kota		and significantly higher plant height, pods/plant, seeds/pod and		
	seed yield of fenugreek was recorded in 100% RDP over 75% I			
		RDP. While in case of mode of applications, the seed treatment + soil application recorded higher plant height and seed yield of fenugreek.		
Mandor				
ManuOl	The results of two years pooled analysis showed that 100% RDP significantly increased the pods/plant, plant height, branches/ plant, test weight, net returns			
		of fenugreek over 50% RDP and control, although, seed and		
		elds, gross returns and seeds/pod were also significantly higher over		
		The different mode of application of mycorrhiza recorded		
		igher pods per plant, test weight, seed yield, biological yield, net		
		C ratio over control and were at par with each other.		
Jabalpur		t was conducted using a Factorial Randomized Block Design with		
Juouipui	-	aosphorus level (100% RDP, 75% RDP, 50% RDP, and 0% RDP)		
		•		
	and Mode of application (Seed treatment at 100g/kg of seed, Soil application 20 days after sowing at 5 kg/acre, and Seed treatment + Soil application). The			
	-	observed in the treatment of 75% RDP combined with seed		
	_	soil application: plant height (95.33 cm), primary branches (8.06),		
		branches at harvest (16.49). However, these factors do not		
	and secondary	oranienes at marvest (10.47). However, these factors do not		

significantly affect phenological characteristics such as days to flower initiation
and days to 50% flowering. For yield parameters also, the best results were
achieved with 75% RDP + seed treatment + soil application, yielding a test
weight of 15.97g and seed yield of 16.97 q ha ⁻¹ .

Project Code	FGK/CM/6.1	Project Title	Effect of gr	owth regulators on yield and quality	
3		3	of fenugreel	• • • • • • • • • • • • • • • • • • • •	
Centres	Ajmer, Dholi,	Ajmer, Dholi, Hisar, Jobner, Kota			
Date of start	2022-23	Date of closure/ duration Three years			
Experimental d	letails	Experimental design: RBD; Replication: 3			
•	•		Treatment combinations: 8		
		T ₁ : Salicylic ac	cid @ 50 ppm	1	
		T ₂ : Salicylic ac			
		T ₃ : Jasmonic acid @ 50 ppm			
		T ₃ : Jasmonic acid @ 100 ppm			
		T ₃ : Benzyl adenine @ 10 ppm			
		T ₃ : Benzyl adenine @ 20 ppm			
		T ₇ : Brassinosteroid @ 0.50 ppm			
		T ₈ : Brassinosteroid @ 1.00 ppm			
		C: Control (water spray)			
		Crop variety: Popular improved variety of respective			
		centre/area.			
		• Plot size &	Crop spacing	g: 4 x 2.4 m, Spacing- 30 x 10 cm	
		1. Plant heigh	it (cm)		
		2. No. of days	s to 50% flow	rering	
		3. No. of pod	s/plant		
		4. Length of pod (cm)			
		5. No. of seeds/pod			
		6. Weight of 1000 seeds			
		7. Duration			
		8. Yield (q ha ⁻¹)			
		9. Diosgenin content (mg 100-g)			
		10. Soil and plant P uptake			
		11. Economics and B:C ratio			
Work done/ach	ievements durin	_			
Ajmer				rn growth regulators significantly	
	increased growth parameters, yield attributes, yield over water spray (control				
		ther revealed that the lower concentration of salicylic acid @ 50			
	ppm, jasmonic acid @ 50 ppm, benzyl adenine				
	798.5, 754.1 kg h		rded significantly higher fenugreek seed yield i.e. 680.7, 723.0,		
			g ha ⁻¹ than water spray. Application of Jasmonic acid @100 ppm,		
		e @ 20 ppm, Brassinosteroid @ 1.00 ppm also gave significantly eld to of fenugreek the magnitude of 1504.7, 1299.7 and 1648.3 kg			
			ek the magniti	ude of 1504.7, 1299.7 and 1648.3 kg	
Dhali	ha ⁻¹ , respectively.			otion of different co	
		eatments comprising of application of different growth regulators, ld (1867.20 kghg ⁻¹) was recorded in treatment application of			
		yield (1867.20 kgha ⁻¹) was recorded in treatment, application of roid @1.00 ppm against control (1518.50 kgha ⁻¹).			
Licer	The circles	u @1.00 ppm ag	amst control (for all the treatments Marines	
Hisar				for all the treatments. Maximum	
	number of poo	is per plant (64.	4) and seed y	yield (2384.4 kg ha ⁻¹) was recorded	

	with the application of Salicylic Acid @ 100 ppm which is being at par with spray				
	of Jasmonic Acid @ 50 ppm (2298 kg ha ⁻¹).				
Jobner	The nine treatments consisted of spray of different growth regulators evaluated				
	in RBD with 3 replications in a plot size of 4.0 x 2.4 m ² with crop geometry of				
	30 x 10 cm. The crop was sown on 05.11.2023. The crop variety was RMt-354.				
	The results showed that different modern growth regulators viz., salicylic acid @				
	50 ppm, salicylic acid @ 100 ppm, jasmonic acid @ 50 ppm, jasmonic acid @				
	100 ppm, benzyl adenine @ 10 ppm, benzyl adenine @ 20 ppm, brassinosteroid				
	@ 0.50 ppm, brassinosteroid @ 1.0 ppm significantly increased growth				
	parameters, yield attributes, yield and economics of fenugreek over control.				
Kota	The maximum plant height pods/plant and seed yield of fenugreek was recorded				
	in foliar application of jasmonic acid @100ppm over control being at par with				
	foliar applications of higher doses.				

TECHNICAL SESSION III

CROP PROTECTION & FOOD SAFETY

Project code	Title	Centres
	Black pepper	
PEP/CP/5.10	Observational trial on efficacy of <i>Trichoderma asperellum</i> and <i>Pochonia</i> for the management of <i>Phytophthora</i> foot rot and nematodes in black pepper	Appangala, Panniyur, Sirsi
PEP/CP/7.1	Screening of insecticides for pollu beetle, <i>Lanka ramakrishnai</i> in black pepper	Appangala, Panniyur
	Cardamom	
CAR/CP/6.11	Evaluation of fungicides against rhizome rot in small cardamom	Appangala, Mudigere, Myladumpara, Pampadumpara
CAR/CP/6.12	Evaluation of fungicides against leaf blight in small cardamom	Appangala, Mudigere, Myladumpara, Pampadumpara
CAR/CP/6.13	Observational trial on the efficacy of <i>Trichoderma asperellum</i> and <i>Pochonia chlamydosporia</i> for the management of rhizome rot and nematode in small cardamom	Appangala, Myladumpara, Pampadumpara
	Ginger	1
GIN/CP/6.15	Priming of rhizomes for enhanced germination, vigour and storage rot suppression in ginger	Ambalavayal, Barapani, Chintapalli, Dholi, Kalyani, Kammarpally, Kanke, Nagaland, Pasighat, Pottangi, Pundibari, Raigarh, Solan.
GIN/CP/7.1	Spray schedule optimization of effective insecticides for shoot borer (Conogethes punctiferalis) in ginger	Ambalavayal, Barapani, Kanke, Mizoram, Mudigere, Nagaland, Pasighat, Pottangi, Pundibari, Sirsi
GIN/CP/7.2	Observational trial on the efficacy of <i>Trichoderma asperellum</i> and <i>Pochonia chlamydosporia</i> for the management of rhizome rot and nematode in ginger	Barapani, Chintapalli, Kozhikode, Pottangi
	Turmeric	
TUR/CP/7.8	Priming of rhizomes for enhanced germination, vigour and storage rot suppression in turmeric	Ambalavayal, Chintapalli, Coimbatore, Dholi, Kammarpally, Kahikuchi, Kanke, Kumarganj, Mizoram, Pasighat, Pottangi, Pundibari, Raigarh, Solan
TUR/CP/7.9	Spray schedule optimization of effective insecticides for shoot borer (Conogethes punctiferalis) in turmeric	Ambalavayal, Barapani, Guntur, Kammarpally, Kanke, Mizoram, Mudigere, Pasighat, Pottangi, Pundibari, Sirsi

TUR/CP/7.10	Observational trial on the efficacy of Trichoderma asperellum and Pochonia chlamydosporia for the management of	•			
	rhizome rot and nematode in turmeric				
	Cumin				
CUM/CP/7.1	Eco-friendly management of cumin blight	Jaugdan, Jobner, Mandor			
	Fenugreek				
FGK/CP/7.1	Bio-efficacy of fungicides against powdery mildew of fenugreek.	Coimbatore, Hisar, Jabalpur, Jagudan, Jobner, Kota, Raigarh.			
Nigella					
NGL/CP/7.1	Management of root rot of nigella	Dholi, Kumarganj, Raigarh			
	Seed spices				
SS/CP/7.1	Survey and monitoring of diseases and insect pests of seed spices for development of prediction models	Ajmer, Coimbatore, Dholi, Guntur, Jagudan, Jobner, Kammarpally, Kalyani, Kumarganj, Raigarh, Sanand.			

PROGRESS REPORT OF THE PROJECTS

CROP PROTECTION & FOOD SAFETY

BLACK PEPPER

Project Code	PEP/CP/5.10	Project Title		nal trial on efficacy of <i>Trichoderma</i> and <i>Pochonia</i> for the management	
			of <i>Phytophthora</i> foot rot and nematodes in black pepper		
Centres	Appangala, Pa	1 11			
Date of start	2021	Date of closur	e/ duration	3 years (2021-22 to 2023-24)	
Date of start 2021 Experimental details		Treatments: T ₁ - Control T ₂ - <i>T. asperellum</i> talc formulation (Mass multiply in cow dung:neem cake mixture (9:1). Mix <i>T. asperellum</i> talc formulation @1-2 kg 100kg ⁻¹ mixture. Apply 2-5kg <i>T. asperellum</i> mass multiplied mixture /plant) T ₃ - <i>T. asperellum</i> biocapsule formulation (1biocapsule /100L water. Apply 2-3L solution /plant) T ₃ - Metalaxyl-mancozeb (Drench the fungicidal solution (0.125 %) T ₃ - <i>Pochonia chlamydosporia</i> liquid formulation (Drench @1ml L ⁻¹) T ₃ - Recommended nematicide (Drench the nematicidal solution) Crop variety: Popular improved variety of respective centre/area. • Experimental design: RBD • Treatments: 6 • Replication: 4			
		September-Oct	tober		
Observation Rec		 Growth parameters Yield and its attributes Disease incidence Soil population of <i>Phytophthora/Pythium/</i>nematodes (soil samples can be sent to IISR for analysis. Samples has to be taken before imposing treatments & after imposing treatments @ July- August and Oct-Nov) Economics- BCR, gross returns, net returns Residue analysis 			
Work done/achie					
Appangala				i variety at CHES Chettali and the	
		ence and yield were recorded and it was observed that treatment orded lowest disease incidence (PDI) and control recorded highest disease.			

Sirsi	Among the different treatments against the foot rot, least percent disease
	intensity (17.51 %) was recorded in treatment T ₃ (Drench metalaxyl +
	mancozeb @ 1.25g/L) 17.51% and found on par with T ₁ (Trichoderma
	asperellum talc formulation mass multiplied in cow dung and neem cake
	mixture (9:1). <i>Trichoderma asperellum</i> talc formulation @ 1-2 kg/100kg above
	mixture. Apply 2-5 kg mixture/plant.) 17.81%. However, in control, the highest
	PDI of 33.33 per cent was recorded.
Panniyur	Phytophthora foot rot disease incidence was lowest for T ₃ - Metalaxyl-
	mancozeb (drenching @ (0.125%) and T ₃ - Recommended nematicide
	(drenching Carbosulfan 25 EC @ 1g/litre) which were on par with 7.44 and
	7.61 % PDI respectively. T ₂ - T. asperellum talc formulation (mass multiplied
	in cow dung:neem cake mixture (9:1) @1-2 kg/100kg mixture and application
	of 2-5kg T. asperellum mass multiplied mixture /plant) and T ₃ - T. asperellum
	bio capsule formulation (1biocapsule /100 L water application of 2-3L solution
	/plant) and T ₃ - Pochoniachlamydosporia liquid formulation (Drench @1ml/L)
	were on par compared to T ₁ -Control with PDI 20.88%.

D. C. A.C. L.	DED/CD/7_1	D 4 /D'41	l a ·	C ·		
Project Code	PEP/CP/7.1	Project Title	Screening of insecticides for pollu beetle,			
G t	4 1 D	<u> </u>	Lanka ramakrishnai in black pepper			
Centres	Appangala, Pa	nnıyur				
Date of start	2021-22	Date of closure/ duration 3 years (2023-24)				
Experimental de	tails	<u>Treatments:</u>				
		T ₁ - Chlorantrar				
		T ₂ - Chlorantra				
		T ₃ - Flubendian				
		T ₃ - Flubendian	nide @ 0.5 m	l L ⁻¹		
		T ₃ - Spinetoram	n @ 0.3 ml L ⁻¹	1		
		T ₃ - Spinetoram		1		
		T ₇ - Quinalphos	s @ 2 ml L ⁻¹			
		T ₈ - Control (w	ater spray)			
			Popular impro	ved variety of respective		
		centre/area.				
		Experimental of	lesign: RBD;	Replication: 4		
		Date of first spray: August; Subsequent sprays at monthly				
		interval (limited to a total of 4 sprays)				
Observation Rec	corded	Growth parameters of the control of the contro	Growth parameters			
		• Yield and its attributes				
		• % damage				
		• Economics- BCR, gross returns, net returns				
		• Residue anal				
Work done/achie	evements durin	g 2023-24 (centi	re-wise)			
Appangala	The treatments	s were imposed of	during 2022 a	nd recorded percent infestation of		
	berries. The av	erage percent in	festation rang	ged from 3.94 to 13.23% across all		
	the treatments	. The average nu	mber of berri	ies per spike ranged between 25.2		
	to 67.0 and the average number of infested berries per spike was between 1.3					
	to 3.57. All the treatments proved effective in reducing the pollu be			- -		
	infestation compared to untreated check. Among them, the black pepper via					
	sprayed with Flubendiamide @ 0.5 ml recorded lowest percent infestation and			ded lowest percent infestation and		
	on par with bo	th the dosages of	Spinetoram.			

Panniyur	Regarding the percentage of damage all treatments T ₂ Chlorantraniliprole @
	0.5 ml showed the lowest percent damage (0.44). T ₁ and T ₃ (Chlorantraniliprole
	@ 0.3 ml /L-1and Flubendiamide @0.5ml/L) were on par with 0.53 and 1.23
	percent damage. Remaining treatments were on par except the absolutecontrol
	with 13 percent damage. Dry berry yield was on par for T ₁ - Chlorantraniliprole
	@ 0.3 ml L-1and T ₂ Chlorantraniliprole @0.5 ml with 0.87 kg vine ⁻¹ .
	Remaining treatments were on par except the absolute control with 0.53kg vine

CARDAMOM

Project Code	CAR/CP/6.11	Project Title	Evaluation of fungicides against rhizome rot in small cardamom		
Centres	Appangala, Mu	ndigere, Myladumpara, Pampadumpara			
Date of start	2020-21	Date of closur	e/ duration	Two years	
Experimental details Work done/achievements during		Crop: existing plants of any variety; Plot size/spacing: 3 x 3 m, 12 plants /plot; Replications:4; Design: RBD Treatments T ₁ - Spray and drench Tebuconazole @1ml L ⁻¹ T ₂ -Spray and drench Fenamidone + Mancozeb @ 2g L ⁻¹ T ₃ - Spray and drench Metalaxyl- mancozeb @ 1.25 g L ⁻¹ T ₃ - Spray and drench copper oxy chloride @ 2g L ⁻¹ T ₃ - Recommended package of practices g 2023-24 (centre-wise)			
Appangala	for rhizome ro	Two rounds of application of fungicides completed, observations were recorded for rhizome rot during Jun, July and August – 2023. The result of the trial showed that the treatment T ₂ (Spraying and drenching of tebuconazole @1mL/L) significantly reduces the disease severity of rhizome rot consecutively for			
Mudigere	The different from ZAHRS, Mudigue 2 g L-1 (0.4 statistically on Tebuconazole 6	The different fungicides were evaluated against rhizome rot of cardamom in ZAHRS, Mudigere. Among the treatments, fungicide Fenamidone + Mancozeb @ 2 g L ⁻¹ (0.42 PDI) showed lowest rhizome rot severity and which was statistically on par with Metalaxyl + Mancozeb @ 1.25 g L ⁻¹ (0.83 PDI) and Tebuconazole @ 1 ml L ⁻¹ (1.25 PDI). The untreated control showed maximum disease severity (10.00 PDI).			
Myladumpara	Pre-treatment observations on disease incidence were recorded during June 2023 and the first round of treatments was imposed in July 2023 after the notice of the disease. Subsequently the second and third rounds of treatments were also imposed at monthly intervals and the observations recorded. The yield data was also recorded. Highest reduction in rhizome rot incidence was observed in T ₂ -Spray and drench Fenamidone + Mancozeb @ 2 g/l (74.25%) followed by T ₃ - Spray and drench Metalaxyl-Mancozeb @ 1.25 g/l (63.93%) and T ₁ - Spray and drench Tebuconazole @ 1 ml/l (53.46%).				
Pampadumpara	Among five to +Mancozeb, 2	treatments evaluated, T_2 (Spray and drench of Fenamidone 2 g L ⁻¹). But there is no significant difference among them. ervations were also recorded.			

Project Code	CAR/CP/6.12	Project Title			
			in small cardamom		
Centres	Appangala, Mu	a, Mudigere, Myladumpara, Pampadumpara			
Date of start	2020-21	Date of closur	e/ duration	Three years	
Experimental de	etails		ng: 3 x 3 m,	, 12 plants /plot; Replications:4;	
		Design: RBD			
		Treatments			
				nncozeb @ 2g L ⁻¹	
		T ₂ -Spray Hexa			
		T ₃ -Spray Man			
		T ₃ –Spray Carl			
		T ₃ - Recommen		of practices	
Work done/achi					
Appangala		* *		bleted, observations were recorded	
	for leaf blight during September, October – 2023 and mean were calculated.				
	The result of the trial showed that the treatment T_2 recorded lowest disease				
	incidence followed by T _{1.}				
Mudigere		_	_	ainst leaf blight of cardamom at	
				ungicide Tebuconazole @ 1 ml L	
				ity and which was statistically on	
				I) and Carbendazim + Mancozeb	
	(19.58 PDI).	PDI). The untre	ated control si	howed maximum disease severity	
Myladumpara	\ /	hearvotione dies	oso incidence	were recorded during September	
Wiyiaduiiipara				nposed in October 2023 after the	
				nd and third round of treatments	
		-	•	I the observations recorded. The	
	yield data was also recorded. Highest reduction in leaf blight incidence was observed in T ₃ - Spray Tebuconazole @ 1 ml/l (73.02%) followed by T ₂ - Spray				
		- •		e difference was not significant	
Pampadumpara				ay hexaconazole @ 2ml/L) and T ₃	
	(spray carbendazim @ 2g/L) reported lesser percent disease incidence as well				
	as severity.	5 /	-	-	

Project Code	CAR/CP/6.13	Project Title	Observation	al trial	on the	efficacy	of	
110ject coue	01114 017 0113		Trichoderm			•		
			chlamydosp					
			rhizome rot			_		
Centres	Appangala, My	ladumpara, Pan	npadumpara					
Date of start	2021	Date of closur	e/ duration	2 years (2	2021-22	to 2022-23))	
Experimental de	tails	Treatments:						
		T ₁ - Control						
		T_2 - T . $asper$	T. asperellum talc formulation (Mass multiply in					
		cowdung:neem cake mixture (9:1). Mix T. asperellum talc						
		formulation @ 1-2 kg 100kg ⁻¹ mixture. Apply 2-5 kg T.						
		asperellum mass multiplied mixture /plant)						
		T ₃ - <i>T. asperellum</i> biocapsule formulation (1biocapsule /100L						
		water. Apply 2-3L solution /plant)						

GINGER

Project Code	GIN/CP/6.15	Project Title	Priming of rhizomes for enhanced				
			germination, vigour and storage rot				
			suppression in ginger				
Centres	• .	al, Barapani, Chintapalli, Dholi, Kalyani, Kammarpally, Kanke,					
		d, Pasighat, Pottangi, Pundibari, Raigarh, Solan					
Date of start	2020-21 Date of closure/ duration Three years						
Experimental de	etails		ease free rhizomes of any variety; Bed				
		1 0	3 x 1m, 40 plants /bed; 25 kg of seed; Design:				
		RBD; Replicat	10ns:6				
		Treatments:					
			eatment with Trichoprime				
			eatment with Metalaxyl-mancozeb @ 1.25g L				
		_	d 0.5 ml L ⁻¹ for 30 minutes				
			reatment with Tebuconazole @ 1ml L ⁻¹ +				
			0.5 ml L ⁻¹ for 30 minutes				
Observation Rec	andad		nded state package of practices				
Observation Rec	corueu	• Sprouting (
			lation at 50 DAS				
		• Plant heigh					
			tillers per clump				
		_	tht of clump (g)				
		• Fresh rhizome yield ha ⁻¹ (t)					
		• Dry rhizome yield ha ⁻¹ (t)					
		• Dry recovery (%)					
		• Storage rot (%)					
			AP,60 DAP, 90DAP (Rhizome rot)				
		Boldness of rhizome					
		• Fiber content					
		• Oleoresin (%)					
		• Essential oil (%)					
		Disease (bacterial wilt, rhizome rot) and pest (shoot borer)					
		incidence,	if any				
Work done/achi	evements during	g 2023-24 (centr	re-wise)				
Ambalavayal			e non-significant in relation to rhizome rot, pest,				
			nally, there was no occurrence of storage rot in				
	any of the treat						
Barapani			were given as per the technical programme to				
			(Var. Nadia). Among the treatments, the highest				
			population (42.33) were recorded in T_1 (Rhizome				
		*	nile the highest plant height (66.55cm) was				
			tment with metalaxyl-mancozeb @ 1.25g/L+				
	_		ed by the treatment T_1 (Rhizome treated with				
		62.30 cm). However, the fresh wt /clump and yield t ha-1 were					
			treatment with tebuconazole @ 1 ml/L+				
			6g) and (14.77 t). Likewise, dry matter content				
1		_	(21.07%) and Oleoresin in T_2 (4.52%) . AT 60				
1	• •		ent was recorded in T ₂ Rhizome treatment with				
	metalaxyl-man	L+ imidaclorpid 0.5 ml/L and lowest in T ₃ , while					

	at 90 days, T ₃ recommended state package and practices recorded the highest. (20.59)
Chintapalli	There is no significant difference among the treatments for different vegetative and yield characters. No storage rot disease incidence was observed among the treatments.
Dholi	All the treatments were found to have significant effect on different parameters viz., sprouting (%), plant population at 50 DAS (%), plant height, number of tillers per clump, fresh rhizome yield/, and rhizome rot incidence at 60 & 90 DAP (%). Storage rot was observed in none of the treatment. Maximum sprouting (92.50%), plant height (40.43 cm), fresh rhizome yield (12.89 t ha ⁻¹) and lowest rhizome rot incidence (17.10%) was recorded in treatment T ₃ where, recommended state package of practices (developed by University) was adopted.
Kalyani	During 2023-24, in respect to sprouting percentage, plant population, maximum plant height, dry yield per hectare, dry recovery percentage and oleoresin (%) the highest result was recorded in Rhizome treated with Trichome (T ₁), whereas Maximum clump Fresh wt., Fresh yield (t ha ⁻¹) was recorded in Rhizome treatment with metalaxyl-mancozeb @1.25g/l + Imidacloprid 0.5ml/l for 30 minutes (T ₂) with lowest Rhizome rot (%).
Kammarpally	To manage the rhizome rot of turmeric , four chemicals (T ₁ -Rhizome treatment with Trichoprime, T ₂ -Rhizome treatment with metalaxyl-mancozeb + Imidacloprid,T ₃ -Rhizome treatment with tebuconazole + Imidacloprid, T ₃ -Control)were used, among the T ₁ -Trichoprime recorded maximum yield (8.27 t ha ⁻¹) followed by T ₂ -Metalaxyl-mancozeb + Imidacloprid (8.17 t ha ⁻¹) when compare to control. PDI of 60 and 90 DAP has reduced in T ₁ followed by T ₂
Kanke	Rhizome of Ginger which were treated with Trichoprime had significant effect on yield. Maximum yield observed under this treatment was 10.92 t/ Ha followed by rhizomes treated with 2g/L matalaxyl- mancozeb as recommended at local level (9.90 t ha ⁻¹) which were found to be at par with each other. Ginger rhizomes treated with matalaxyl- mancozeb @1.25 g/L and Imidacloprid @ 0.5 ml/L yielded 8.01 t ha ⁻¹ which was also at par with rhizome yield (7.33 t ha ⁻¹) treated with Tebuconazole @ 1ml/L and Imidacloprid 0.5 ml/L. Yield attributing characters were also in line with the results. Storage rot was also found minimum in case of rhizome treated with Trichoprime (3.67%) as compared with maximum (5.83%) in case of T ₂ i.e Rhizome treated with metalaxyl-mancozeb @1.25 g/L and Imidacloprid 0.5 ml/L for 30 min. However, it was at par with T ₃ .
Nagaland	Priming treatments significantly reduced the disease incidence. According to the data, T ₃ produced the highest fresh rhizome yield at 25.798 t ha ⁻¹ , though it also showed relatively higher levels of storage rot (12.97%) and rhizome rot PDI (39.54). T ₃ followed with a yield of 24.55 t ha ⁻¹ , accompanied by moderate storage rot (10.74%) and rhizome rot PDI (28.50). T ₁ , while yielding slightly lower at 23.125 t ha ⁻¹ , demonstrated the lowest storage rot (7.54%) and rhizome rot PDI (15.32). T ₂ had the lowest yield at 22.925 t ha ⁻¹ , but experienced the highest storage rot (13.06%) and significant rhizome rot PDI (35.43).
Pasighat	Four treatments were given as per the technical programme to evaluate their effects on ginger (<i>var. Nadia</i>). Among the treatments, the highest sprouting % (93.89) and maximum plant population at 50 DAS (28.17) was recorded in T ₁ (Rhizome treated with trichoprime). Highest plant height (45.49 cm) as well as number of tillers/clump (3.60) was also found highest in T ₁ - Trichoprime,

	followed by T ₂ - (Rhizome treatment with metalaxyl-mancozeb @ 1.25g L ⁻¹ + imidaclorprid 0.5 ml L ⁻¹) with a plant height of 41.88 cm and 3.10 number of tillers/clumps. Yield/clump (130.24 g) was highest in T ₁ (Rhizome treated with trichoprime) followed by T ₂ (124.07 g) that is rhizome treatment with metalaxyl-mancozeb @ 1.25g L ⁻¹ + imidaclorprid 0.5 ml L ⁻¹). Similarly, the yield t ha ⁻¹ was also maximum in T ₁ (11.55 t ha ⁻¹) followed by T ₂ (10.57 t ha ⁻¹). Highest PDI% for rhizome rot (12.45 %) was observed in T ₃ -(Recommended
	state package and practices) followed by T_1 (6.52%) and lowest in T_2 (4.19%).
Pottangi	Rhizome treatment with Trichoprime (<i>T.harzianum</i>) is found to be best followed Rhizome treatment with Metalaxyl Mancozeb @1.25gm/l +Imidacloprid @0.5ml/l for 30 minutes in ginger.
Pundibari	Highest sprouting percentage (84.33) found for treatment 2. Highest plant stand (33.83) at 50 DAS, highest plant height (56.17 cm) recorded in case treatment 2. Highest tiller no. (8.67) found for treatment 4. Lowest rhizome rot and wilt percent (11.29%) recorded in treatment 2 followed by treatment 1 (14.40%). No <i>Phyllosticta</i> leaf spot recorded. Lowest storage rot recorded in treatment 1 (3.50%). Highest yield was recorded in treatment 2 (12.22 t ha ⁻¹). Highest dry recovery was recorded in treatment 1 (20.83%).
Raigarh	Minimum rhizome rot incidence (%) 16.62, storage rot (%) 7.83 and maximum yield 14.15 t ha ⁻¹ was found in treatment (T ₂) Rhizome treatment with metalaxyl + Mancozeb @ 1.25 gm liter
Solan	Rhizome treatment with tebuconazole @ 1ml L ⁻¹ + Imidacloprid 0.5 ml L ⁻¹ for 30 minutes (T ₃) resulted in the highest rhizome germination (90.75%), number of tillers per plant (6.25), plant height (73.00 cm), and yield (99.00 q ha ⁻¹), with the lowest rhizome rot incidence (14.25%). Rhizome treatment with metalaxylmancozeb @ 1.25g L ⁻¹ + imidacloprid (0.5 ml L ⁻¹ for 30 minutes) (T ₂) gave the second-best result.

Droingt Code	GIN/CP/7.1	Project Title	Spray schedule optimization of effective	
Project Code	GIN/CP//.1	Project Title	* •	
			insecticides for shoot borer (Conogethes	
			punctiferalis) in ginger	
Centres	Ambalavayal,	Barapani, Kank	ke, Mizoram, Mudigere, Nagaland, Pasighat,	
	Pottangi, Pund	ibari, Sirsi		
Date of start	2020-21	Date of closur	e/ duration 3 years (2023-24)	
Experimental de	etails	<u>Treatments:</u>		
		T ₁ - Chlorantrar	niliprole @ 0.3 ml L ⁻¹	
		T ₂ - Chlorantrai	niliprole @ 0.5 ml L ⁻¹	
		T ₃ - Flubendiamide @ 0.3 ml L ⁻¹		
		T ₃ - Flubendiamide @ 0.5 ml L ⁻¹		
		T ₃ - Spinosad @ 0.3 ml L ⁻¹		
		T ₃ - Spinosad @ 0.5 ml L ⁻¹		
		T ₇ - Chlorantraniliprole + Spinosad @ 0.5 ml L ⁻¹		
		(alternatively)		
		T ₈ - Control (wa	ater spray)	
		Crop variety: Popular improved variety of respective		
		centre/area.		
		Experimental d	lesign: RBD; Treatments: 8; Replication: 4	
		-	rays: 45 days after planting; Subsequent	
		*	ightly intervals (maximum no. of sprays	
		limited to 7)		

Observation Rec	• Growth parameters	
Observation rec	 Yield and its attributes 	
	 Pre-treatment count (no of shoots/clump and no of 	
	infested	
	• shoots/clump)	
	• Final count: 15-20 days after the last spray (no of	
	shoots/clump	
	• and no of infested shoots/clump)	
	• Economics- BCR, gross returns, net returns	
	• Residue analysis	
Work done/achi	evements during 2023-24 (centre-wise)	
Ambalavayal	No residues were detected in any of the treatments, with all chemical levels	
•	below the quantification limit (BQL). The results indicate that the chemical	
	treatments were equally effective in controlling shoot borer damage in ginger.	
	Only the control treatment (T_8) showed higher pest incidence.	
Barapani	This experiment was conducted with Nadia variety and treatments were applied	
	as per the technical programme. Among the treatments, the highest plant height	
	was found in T ₁ Chlorantraniliprole @ 0.3 ml L-1 (72.80cm) followed by T ₃	
	Flubendiamide @ 0.3 ml L-1(69.83cm). Likewise total number (21.5) and leaf	
	length (24.00cm) were found highest in T ₁ Chlorantraniliprole @ 0.3 ml L-1.	
	However, the number of shoots /clump (3.5) was found highest in T ₂	
	Chlorantraniliprole @ 0.5 ml L-1, while the number of infected shoots /clump	
	was found to be maximum in T8 water spray (1.25), whereas there was no	
	infected shoots in the other treatments .As far as yield parameters are	
	concerned, T ₃ Spinosad @ 0.3 ml L-1 recorded the highest fresh weight /clump	
	(439.43g) and Yield t ha ⁻¹ (17.18t).	
Kanke	Spray of insecticide affected significantly on Ginger Rhizome yield and yield	
	attributing characters. Spray of Chlorantraniliprole + Spinosad @ 0.5 ml/Lit	
	(alternatively) enhanced (T ₇) the fresh rhizome yield from 8.55 t ha ⁻¹ (control)	
	to 13.26 t ha ⁻¹ which was at par with T ₃ , T ₃ , T ₃ and T ₃ . It concludes that insection a should be spread to get higher and healthy yield	
Mizonom	insecticide should be sprayed to get higher and healthy yield.	
Mizoram	During the study, the infestation of the shoot borer was not observed irrespective of treatment. The result from the experiment showed that	
	application of chlorantraniliprole + spinosad @ 0.5 ml L ⁻¹ (alternately) at	
	fortnightly intervals was found very effective that resulted in good ginger	
	growth, higher yield attributes, and ultimately higher fresh rhizome yield (20.9)	
	t ha ⁻¹) as compared to other insecticide treatments.	
Mudigere	Application of application of chlorantraniprole @ 0.5 ml/ litre found to be	
U	effective against shoot borer in ginger.	
Nagaland	Among the eight treatment combinations, the sprouting percentage	
	significantly varied from 27.62% in T ₃ to 54.29% in T ₇ . Plant height was	
	recorded highest in T_8 (40.07 cm), and lowest was recorded in T_1 (22.41 cm)	
	treated plots. It was also recorded that number of tillers per clump infested	
	highest in T ₃ (4.00) followed by T ₂ (3.40). Yield per clump was highest in T ₈	
	(41.87 g) and lowest in T_2 (9.91 g). The projected yield was highest in T_7 (2.68	
	t ha ⁻¹), followed by T ₂ (2.41 t ha ⁻¹). The highest BC Ratio was recorded in T ₂	
	(3.48), with the lowest in T_3 (2.09). and no infestation noticed in T_1 and T_3	
	treated plants.	
Pasighat	This experiment was conducted with Nadia variety and treatments were applied	
	as per the technical programme. The results showed that there was no	

significant difference among the treatments, however, the highest plant height			
was found in T ₁ - Chlorantraniliprole @ 0.3 ml L ⁻¹ (44.2 cm) followed by T ₃ -			
Flubendiamide 0.3 ml L ⁻¹ (43.0 cm) and the lowest plant height was recorded			
in T ₃ – Spinosad 0.3 ml L ⁻¹ (38.4 cm). Highest number of tillers/clump (3.50)			
was recorded in T ₃ - Flubendiamide 0.3 ml L ⁻¹ and highest number of			
leaves/plant (14.30) was recorded in T ₂ - Chlorantraniliprole 0.5 ml L ⁻¹ .			
Maximum infested shoots/clump (0.40) was recorded in T ₈ - control followed			
by T ₁ - Chlorantraniliprole 0.3 ml L ⁻¹ (0.35). As far as yield is concerned, highest			
yield/clump and yield per ha (121.7 g, 11.6 t ha ⁻¹) was observed in T ₃ -			
Flubendiamide 0.5 ml L ⁻¹ followed by T ₁ - Chlorantraniliprole 0.3 ml L ⁻¹ (116.0			
g, 11.2 t ha ⁻¹), respectively.			
Spaying of Chlorantraniliprole and Spinosad @ 0.5 ml L-1 (alternatively is			
found to be best followed by spaying with Chlorantraniliprole @ 0.5 ml L-1			
Highest sprouting percentage (93.75%) were found for treatments 1. An			
average of 7.3to 9.8 tiller no found in the plant population. No infested shoot			
was found during 2023-24 before and after spray at Pundibari Centre. Highest			
plant height (65.75 cm) recorded in T ₁ and highest leaf length (22.80 cm)			
recorded in T ₃ . Highest yield (12.02 t ha ⁻¹) recorded in treatment 7 which is			
closely followed by T ₁ (11.93 t ha ⁻¹ .)			
Among the different treatments, T ₂ (Chlorantraniliprole) @ 0.05% recorded			
significantly least shoot borer incidence (13.33%) and it was found on par with			
T ₇ (alternatively sprayed with Chlorantraniliprole and Spinosad) @ 0.05% with			
the incidence of 15.52 %, T ₃ (Spinosad @ 0.03) (15.74%). T ₃ (Flubendiamide)			
@ 0.05% (15.95%), T ₃ (Spinosad) @ 0.05 (16.27%), T ₁ (Chlorantraniliprole)			
@ 0.03% (16.62%). Next best treatments were T ₃ (Flubendiamide) @ 0.03%			
(19.84%). However, the control T ₈ (water spray) recorded highest shoot borer			
incidence (22.58%).			

Project Code	GIN/CP/7.2	Project Title	Observation	al trial on the efficacy of
			Trichoderm	a asperellum and Pochonia
			chlamydosp	oria for the management of
			rhizome rot	and nematodes in ginger
Centres	Barapani, Chin	tapalli, Kozhiko	de, Pottangi	
Date of start	2021-22	Date of closur	e/ duration	2 years (2021-22 to 2022-23)
Experimental de	tails	Treatments:		
		T ₁ - Control		
		T ₂ - T. asperelli	<i>ım</i> talc formu	lation (Mass multiply in cowdung:
				lix T. asperellum talc formulation
		@1-2 kg 100kg ⁻¹ mixture. Apply 2-5kg <i>T. asperellum</i> mass		
		multiplied mixture /bed)		
		T ₃ - Metalaxyl-mancozeb (Drench the fungicidal solution		
		(0.125 %)		
		T ₃ - Pochonia c	hlamydospor	ia liquid formulation (Drench
		$@1ml L^{-1}$)		
		T ₃ - Recommended nematicide (Drench the nematicidal		
		solution)		
		Crop variety: Popular improved variety of respective		
		centre/area.		
		Experiment	ntal design: R	BD

		• Treatments: 5
		• Replication: 4
		• Bed size: 3 x1m
		• Spacing: 15x30 cm
		Total no. of beds: 20
		Date of application: At the time of planting
		30 days after planting (DAP)
		60 days after planting (DAP)
Observation R	ecorded	Growth parameters
		Yield and its attributes
		Disease incidence
		• Soil population of <i>Fusarium/Pythium/</i> nematodes (soil
		samples can be sent to IISR for analysis. Samples has to
		be taken before imposing treatments & after imposing
		 treatments @ July- August and Oct-Nov)
		• Economics- BCR, gross returns, net returns
		 Residue analysis
Work dono/ook	niovomente durin	
		g 2023-24 (centre-wise) nt was conducted with Nadia variety and treatments were applied
Barapani	_	nical programme. Among the treatments, the highest plant height,
	_	aves, leaf length and leaf breadth were recorded in T_2 - T .
		6.4cm), (30.5), (25.90cm) and (2.5 cm) respectively. However,
		ht /clump and yield t ha ⁻¹ were found highest in T ₃ - Pochonia
		ia (391.21 g) and 16.09 t ha ⁻¹ respectively. Highest rhizome rot
		0 and 90 DAS were recorded in T ₃ - Recommended nematicide
		5.27%), respectively, while minimum rhizome rot were recorded
Chintopollo		rellum (11.71% and 10.22%) respectively.
Chintapalle	_	fferent treatments, more plant height (60.23 cm) fresh rhizome
		t (309.52 g) and yield per hectare (20.27 t) were recorded in
		Pochonia formulation. More number of tillers (10.78) was
	_	pplication of <i>T. asperellum</i> talc. No nematodes incidence was ng the treatments.
Kozhikode		ere imposed as per the schedule and population of fungal
Kozilikode		nematodes were enumerated before and after imposing different
	1	il samples analyzed after imposing treatments recorded reduction
		colony units of <i>Phytophthora</i> and <i>Pythium</i> after the application
	_	ents, Trichoderma asperellum and <i>Pochonia chlamydosporia</i> . se was observed in ginger 30 days after planting and maximum
		rved in treatments T_1 (control) and T_3 (<i>Pochonia chlamydosporia</i>
	-	ation) and it ranged 0-15 %. Whereas in treatments T_3 (T. as formulation) T_2 (T. as $a = 1$) and T_3
	-	c formulation), T ₃ (<i>T. asperellum</i> biocapsule formulation) and T ₃
Pottongi		ancozeb (0.125 %) the PDI ranged from 0-5%.
Pottangi	Rhizome treatment with T. asperellum talc formulation (Mass multiply in cowdung :neem cake mixture (9:1) is found to be best	
	cowdung :neer	ii cake mixture (9.1) is found to be dest

TURMERIC

Project Code	TUR/CP/7.8	Project Title			for enhanced
			germination,	•	storage rot
			suppression		
Centres	Ambalavayal, Chintapalli, Coimbatore, Dholi, Kammarpally, Kahikuchi,				
D (0)	Kanke, Kumarganj, Mizoram, Pasighat, Pottangi, Pundibari, Raigarh, Solan 2020 Date of closure/ duration Three years (2023-24)				
Date of start	2020				
Experimental de	tails	•		rhizomes of any	•
			_	ints /bed; 25 kg o	r seed; Design:
		RBD; Replicate Treatments:	ions:6		
			atmant with T	ui ah amuina a	
		T ₁ -Rhizome tre		-	ob @ 1.25 a I -1
		Imidacloprid 0		netalaxyl-mancoze	30 @ 1.23g L +
				Tebuconazole	@ 1ml L ⁻¹ +
		Imidacloprid 0			e iiii L
				tage of practices	
Observation Rec	orded	• Sprouting (•	ingo or principos	
	01000		ation at 50 D	AS	
		Plant heigh			
			tillers per clu	mn	
			ht of clump (g	-	
		 Fresh rhizome yield ha⁻¹ (t) 			
		Dry rhizome yield ha ⁻¹ (t)			
		Dry recove	•	,	
		Storage rot	• '		
			, ,	90 DAP (Rhizome	e rot)
		Curcumin c		`	,
		Oleoresin (` '		
		Essential of	,		
			` '	d pest (shoot borer	() incidence, if
		any	,	1 \	,
Work done/achie	vements during	g 2023-24 (centr	e-wise)		
Ambalavayal	In the priming t	reatment in turn	eric, treatmen	t differences were	non-significant
	with respect to	control of stor	age rot and rl	nizome rot. Howe	ver, leaf blotch
	incidence at 150 days after planting (DAP) negatively impacted the overall				
	turmeric yield				
Chintapalli	There is no significant difference among the treatments for different vegetative				
	and yield characters. No storage rot and rhizome rot disease incidence was				
Coimbatana	observed among the 4 treatments. Results indicate the complete suppression of storage rot. Turmeric rhizomes				
Coimbatore		-		-	
	treated with Trichoprime showed the highest fresh rhizome yield (28.69 t ha		· ·		
	The Trichoprime treatment also significantly controlled the severity of for		-		
	diseases viz., leaf spot (PDI 4.89) and leaf blotch (PDI 5.64) as compared to the				
	recommended state package of practices (PDI: 15.17 and 12.19 PDI respectively).		iu 12.19 FDI,		
	respectively).				

Dholi	Export yield all the treatments were found to have non significant effect on
Dhon	Except yield, all the treatments were found to have non-significant effect on
	different parameters viz., sprouting (%), plant population at 50 DAS (%), plant
	height (cm) and number of tillers per clump. Highest fresh rhizome yield (45.05
	t/ ha) was recorded in treatment T ₃ where, recommended state package of
	practices (developed by University) was adopted. Neither storage rot nor
	rhizome rot incidence was recorded at either day of observation <i>i.e.</i> , 30, 60 &
	•
	90 DAS.
Kammarpally	Among the treatments used to manage rhizome rot in turmeric, T ₁ (Rhizome
	treatment with Trichoprime) recorded the highest yield (31.57 t ha ⁻¹), followed
	by T ₃ (29.75 t ha ⁻¹), compared to the control. Percent Disease Index (PDI) at 60
	and 90 days after planting (DAP) was also reduced in T ₁ , followed by T ₂ .
Kahikuchi	Treatment T ₃ , (rhizome treatment with Tebuconazole + Imidacloprid),
	demonstrated remarkable superiority in various aspects. It exhibited the highest
	sprouting percentage (96.48%) and the lowest incidence of rhizome rot at 90
	DAP (3.42%). Moreover, T ₃ also yielded the best results in terms of storage rot
	reduction in stored rhizome up to fourth week of storage, fresh rhizome yield
	(21.87 t ha ⁻¹), dry rhizome yield (4.32 t ha ⁻¹), and curcumin content (5.77).
Kanke	Turmeric rhizome treated with <i>Trichoprime</i> had significant effect on yield.
Kanke	Maximum yield observed under this treatment was 33.023 t/ Ha followed by
	rhizomes treated with metalaxyl-mancozeb @ 2g/L (T ₃) which is considered as
	recommended dose at local level (30.240 t ha ⁻¹). Priming of Rhizome with
	matalaxyl- mancozeb @1.25 g/L and Imidacloprid @ 0.5 ml/L(T ₂₎ yielded
	27.958 t ha ⁻¹ which was also at par with the above both. rhizome treated with
	Tebuconazole @ 1ml/L and Imidacloprid @0.5 ml/L (T ₃₎ yielded 26.955 t ha ⁻¹ .
	Yield attributing characters were also found in same line. Storage rot was found
	minimum (4%) in case of rhizome treated with T ₃ - Rhizome treatment with
	metalaxyl-mancozeb @ 2g/L for 30 min. which was at par with T ₁ i.e Trichoprime
	treated Rhizomes (4.50%).
Kumarganj	In Priming of rhizomes for enhanced germination, vigour and storage rot
<i>C</i> 3	suppression in turmeric four treatments were tested, among these treatment, T ₁ -
	Rhizome treated with <i>Trichoprime</i> recorded highest fresh rhizome yield (37.67)
	t ha ⁻¹) followed by in T-2 treatment (yield 34.75 t ha ⁻¹)-Rhizome treated with
	metalaxyl-mancozeb @ 1.25g/L+ Imidacloprid 0.5 ml/L and in Treatment T ₃ -
	Rhizome treated with tebuconazole @ 1ml /L+ Imidacloprid 0.5 ml/L (yield
	¥
	32.33 t ha ⁻¹). The lowest yield was recorded in T-4 treatment- rhizome treated
	with Carbendazim-(30.59 t ha ⁻¹).
Mizoram	The results indicate that rhizome priming enhances germination, vigor, and
	yield. Turmeric rhizomes primed with Trichoprime (T ₁) recorded significantly
	higher sprouting percentage (94.33%), plant height (123.77 cm), fresh clump
	weight (278.90 g), fresh rhizome yield (27.08 t ha ⁻¹), and dry rhizome yield
	(6.34 t ha ⁻¹). T ₂ recorded the highest tillers per plant (3.11) but lower clump
	weight (229.63 g) and the least in recommended state package of practices
	without priming (T_3) .
Pasighat	Among the treatments, T ₁ (Rhizome treated with Trichoprime) exhibited
	superior results with the highest sprouting percentage (92.78%), plant height
	(116.08 cm), number of tillers per clump (3.30), yield per clump (187.39 g),
	and yield per hectare (18.31 t ha ⁻¹). In contrast, T ₃ (Recommended state package
	and practices) had the highest rhizome rot incidence (10.64%), while T ₂

	(Rhizome treatment with metalaxyl-mancozeb and imidacloprid) also			
	performed well in terms of yield and plant characteristics.			
Pottangi	Rhizome treatment with Trichoprime.(T.harzianum) is found to be best			
	followed Rhizome treatment with Metalaxyl Mancozeb @1.25gm/l			
	+Imidacloprid @0.5ml/l for 30 minutes in turmeric			
Pundibari	For all the treatment 100 percent sprouting was noticed. Highest plant height			
	(98.17 cm) and tiller no (2.83) was noticed for treatment 1. No rhizome rot and			
	wilt and leaf blotch incidence recorded. Lowest leaf spot (PDI 2.96) recorded			
	in treatment 3. Lowest storage rot percentage (1.11) recorded in treatment 1			
	followed by treatment 2 and 3 (1.67). Highest yield (26.38 t ha ⁻¹) was recorded			
	in treatment 3 followed by treatment 1 (25.95t ha ⁻¹). Highest dry recovery			
	(21.49%) recorded for treatment 1.			
Raigarh	Maximum yield was obtained(24.23 t ha ⁻¹) in rhizome treatment with			
	Tebuconazole @ 1ml/litre+Imidachloprid 0.5 ml/litre for 30 minutes tretemnt			
	T_3 .			
Solan	Rhizome treatment with tebuconazole @ 1ml L ⁻¹ + Imidacloprid 0.5 ml L ⁻¹ (T ₃)			
	for 30 minutes resulted in highest rhizome germination (91.00%), number of			
	tillers per plant (6.00), plant height (118.50cm) and yield (182.00 q ha ⁻¹) with			
	a minimum rhizome rot incidence (18.00%). This was followed by rhizome			
	treatment with metalaxyl-mancozeb @ 1.25g L ⁻¹ + imidacloprid (0.5 ml L ⁻¹ for			
	30 minutes) and giving the second-best increase in horticultural parameters.			

Project Code	TUR/CP/7.9	Project Title	Spray schedule optimization of effective
210,000 0000		110,000 11010	insecticides for shoot borer (Conogethes
			punctiferalis) in turmeric
Centres	Ambalayayal.	Barapani, Guntur.	Kammarpally, Kanke, Mizoram, Mudigere,
	_	ngi, Pundibari, Sir	
Date of start	2021-22	Date of closure/	
Experimental de	etails	Treatments:	
•			iprole @ 0.3 ml L ⁻¹
			liprole @ 0.5 ml L ⁻¹
		T ₃ - Flubendiamio	
		T ₃ - Flubendiamio	
		T ₃ - Spinosad@ 0	
		T ₃ - Spinosad @	
		-	liprole + Spinosad @ 0.5 ml L ⁻¹
		(alternatively)	
		T ₈ - Control (water	er spray)
		Crop variety: Pop	pular improved variety of respective
		centre/area.	
		Experimental des	sign: RBD; Treatments: 8; Replication: 4
		Date of first spra	y: 45 days after planting; Subsequent sprays:
		at fortnightly into	ervals (maximum no of sprays limited to 7)
Observation Rec	corded	 Growth parar 	meters
		 Yield and its 	attributes
		Pre-treatment	t count (no of shoots/clump and no of
		infested shoo	ots/clump)
		• Final count:	15-20 days after the last spray (no of
		shoots/clump	and no of infested shoots/clump)
		• Economics- I	BCR, gross returns, net returns

	Residue analysis
Work done/ach	ievements during 2023-24 (centre-wise)
Ambalavayal	The result indicates that chemical treatments were on par in controlling the
	shoot borer damage in turmeric. Only the control treatment had slightly more
	pest incidence. Comparatively shoot borer attack is less in turmeric
Barapani	This experiment was conducted with Megha Turmeric1 and treatments were
1	applied as per the technical programme. Among the treatments, the highest
	plant height was found in T ₃ Flubendiamide @ 0.5 ml L-1 (112.45cm) followed
	by T ₃ Flubendiamide @ 0.3 ml L-1. (110.63 cm). Likewise total number of
	leaves (13.75) and leaf length (53.60 cm) were found highest in T ₃ Spinosad @
	0.3 ml L-1. The number of shoots /clump was found highest in T ₁
	Chlorantraniliprole @ 0.3 ml L-1. (4.75). However, no infected shoots were
	found in other treatments. As far as yield parameters are concerned, T ₁
	Chlorantraniliprole @ 0.3 ml L-1recorded the highest fresh weight /clump
	(488.21g) and Yield t ha ⁻¹ $(17.32t)$.
Guntur	During 2023-24, the final psuedostem damage after three sprays significantly
Guiltui	lowered in all the insecticide treatments over control. Among the insecticides,
	Chlorantraniliprole + Spinosad @ 0.5 ml L ⁻¹ (alternatively) recorded
	significantly higher yield compared to the control and was on par with the
	treatments viz., T ₂ (Chlorantraniliprole @ 0.5 ml L ⁻¹), T ₃ (Flubendiamide @ 0.5
	ml L^{-1}) and T_3 (Spinosad @ 0.5 ml L^{-1}).
Kammarpally	To manage the shoot borer in turmeric, different treatments (T ₁ -
Traininarparty	Chlorantraniliprole @ 0.3 ml L-1, T ₂ - Chlorantraniliprole @ 0.5 ml L-1 , T ₃ -
	Flubendiamide @ 0.3 ml L-1 , T ₃ - Flubendiamide @ 0.5 ml L-1 , T ₃ -
	Spinosad@ 0.3 ml L-1, T ₃ - Spinosad@ 0.5 ml L-1) T7- Chlorantraniliprole
	+ Spinosad @ 0.5 ml L-1 (alternatively), T8- Control (water spray) were
	formulated, among the treatments maximum yield was observed from T ₂ -
	(36.46 t ha ⁻¹) followed by T ₃ -(32.66 t ha ⁻¹) when compare to control. Maximum
	reduction of pest infection was noticed in T_2 followed by T_3 . The shoot infection
	was less in T_2 treatment (0.92%).
Kanke	Spray of insecticide affected significantly on Turmeric Rhizome yield and yield
Tunke	attributing characters. Spray of Chlorantraniliprole + Spinosad @ 0.5 ml/Lit
	(alternatively) enhanced (T7) the fresh rhizome yield from 24.35 t ha ⁻¹ (control)
	to 29.27 t ha ⁻¹ which was at par with all the treatments except control. It
	concludes that insecticide should must be sprayed to get higher and healthy
	yield by getting minimum infestation of shoot borer.
Mizoram	During the study, infestation of shoot borer was not observed irrespective of
WIIZOIAIII	treatment. Result showed that application of chlorantraniliprole + spinosad @
	0.5 ml L ⁻¹ (alternately) at fortnightly intervals found very effective that resulted
	in good turmeric growth, higher yield attributes and ultimately higher yield
	(13.13 t ha ⁻¹) at par with flubendiamide @ 0.3 ml/L (12.93 t ha ⁻¹).as compared
	to other insecticide treatments.
Mudigere	Application of application of chlorantraniprole @ 0.5 ml/ litre found to be
Widdigere	effective against shoot borer in Turmeric.
Pasighat	This experiment was conducted with <i>Nadia</i> variety and treatments were applied
1 45151141	as per the technical programme. The results showed that there was no
	significant difference among the treatments, however, the highest plant height
	was found in T ₁ - Chlorantraniliprole @ 0.3 ml L ⁻¹ (104.53 cm) followed by T ₃ -
	Flubendiamide 0.5 ml L ⁻¹ (100.23 cm) and the lowest plant height was recorded
	in T ₃ – Spinosad 0.3 ml L ⁻¹ (95.23 cm). Highest number of tillers/clump (3.40)
	I ii 13 – Spinosau 0.5 iii L (35.25 ciii). Highest humoer of thiefs/ciulip (5.40)

	was recorded in T ₁ - Chlorantraniliprole @ 0.3 ml L ⁻¹ , whereas, highest number		
	of leaves/plant (7.45) was recorded in T ₃ - Flubendiamide 0.3 ml L ⁻¹ and lowest		
	in T_3 – Spinosad 0.5 ml L^{-1} (6.55). Maximum infested shoots/clump (0.55) was		
	recorded in T ₈ - Control followed by T ₃ - Flubendiamide 0.3 ml L ⁻¹ (0.32). As		
	far as yield is concerned, highest yield/clump and yield per ha (152.08 g, 15.04		
	t ha ⁻¹) was recorded in T ₁ - Chlorantraniliprole @ 0.3 ml L ⁻¹ followed by T ₃ -		
	Flubendiamide 0.5 ml L ⁻¹ (143.08 g, 13.83 t ha ⁻¹), respectively.		
Pottangi	Spaying of Chlorantraniliprole and Spinosad @ 0.5 ml L-1 (alternatively is		
	found to be best followed by spaying with Chlorantraniliprole @ 0.5 ml L-1		
Pundibari	Good sprouting percentage were found for all the treatments. An average of		
	3.63 to 4.02 no of shoot found before infestation of shoot borer. No infested		
	shoot was found before the spray. No of shoot borer infested shoots found at		
	Pundibari during 2023-24 after spray also. Highest plant growth recorded in		
	case of treatment 1 in respect of plant height, leaf length and leaf width. Highest		
	yield (21.59 t ha ⁻¹) recorded in case of treatment 2 which is closely followed by		
	T_1 and $T7$ (21.35t ha ⁻¹ and 21.07t ha ⁻¹ respectively.)		
Sirsi	Among the different treatments, treatment T ₂ (Chlorantraniliprole) @ 0.05%		
	recorded significantly least shoot borer incidence of 10.09 per cent, and it was		
	found on par with T ₇ (alternatively sprayed with Chlorantraniliprole and		
	Spinosad @ 0.05 %) (10.48 %) T ₃ (Flubendiamide @ 0.05%) (10.78 %), T ₃		
	(Spinosad @ 0.05) (11.10 %). However, the control T ₈ (water spray) recorded		
	highest shoot borer incidence (27.87 %).		

Project Code	TUR/CP/7.10	Project Title	Observational trial on the efficacy of	
Ü		, and the second	Trichoderma asperellum and Pochonia	
			chlamydosporia for the management of	
			rhizome rot and nematode in turmeric	
Centres	Barapani, Coin	nbatore, Guntur,	r, Kozhikode	
Date of start	2021-22	Date of closur	re/ duration 2 years (2021-22 to 2022-23)	
Experimental d	letails	Treatments:		
		T ₁ - Control		
		T ₂ - T. asperelli	<i>lum</i> talc formulation (Mass multiply in cowdung:	
			ixture (9:1). Mix <i>T. asperellum</i> talc formulation	
			100kg mixture. Apply 2-5kg <i>T. asperellum</i> mass	
		multiplied mixture per bed)		
		T ₃ - Metalaxyl-mancozeb (Drench the fungicidal solution		
		(0.125 %)		
		T ₃ - Pochonia chlamydosporia liquid formulation (Drench		
		@1ml L ⁻¹)		
			nended nematicide (Drench the nematicidal	
		solution)		
			y: Popular improved variety of respective	
		centre/area.		
		-	ental design: RBD	
		Treatments		
		Replication		
		• Bed size: 3	3 x1m ² ; 40 plants/bed	
		• Spacing: 1	15x30 cm	
		• Total no. o	of beds: 20	
		Time of applica	cation: At the time of planting	

		30 days after planting (DAP)		
		60 days after planting (DAP)		
Observation Recorded		Growth parameters		
		Yield and its attributes		
		Pre-treatment count (no of shoots/clump and no of		
		infested shoots/clump)		
		• Final count: 15-20 days after the last spray (no of		
		shoots/clump and no of infested shoots/clump)		
		Economics- BCR, gross returns, net returns		
		Residue analysis		
Work done/achie		g 2023-24 (centre-wise)		
Barapani		nt was conducted with Megha Turmeric 1 and treatments were		
		the technical programme. Among the treatments, the highest		
	1	as recorded in T ₂ -T. Asperellum (107.6cm), while the number of		
		nt in T ₃ - Pochonia chlamydosporia (13.93) followed by T ₂ -T.		
		1.88). T ₂ also recorded the highest leaf length and breadth. (52.58		
		73 cm) respectively. However, T ₃ - Pochonia chlamydosporia resh wt/clump as well as yield t ha ⁻¹ (445.28g and 17.22 t)		
		the highest rhizome rot incidence at 60 DAS was recorded in T ₁		
	1	ile minimum rhizome rot was recorded in T_3 - Pochonia		
	· ·			
Coimbatore	chlamydosporia (5.28%). The results showed that the different treatment combinations were able to			
Commoutore		lant growth parameters of turmeric var. CO 2. Rhizome rot		
	-	mpletely absent in all the treated plots. Rhizome rot disease was		
		ent in all the treated plots except in control with 10.80% rhizome		
		and 7.25% incidence in nematicide treatment. The treatment T_2		
	(application of	Trichoderma asperellum talc formulation) recorded the highest		
	fresh rhizome	yield of 29.10 t ha^{-1} , followed by T_3 (soil drenching with		
	metalaxyl-man	cozeb @ 0.125%) with a fresh rhizome yield of 27.83 t ha ⁻¹ .		
Guntur	All the treatme	nts imposed showed non-significant results for the management		
		and nematodes in turmeric using Trichoderma asperellum &		
	Pochonia chlai			
Kozhikode	_	ents, T ₂ (<i>T.asperellum</i> talc formulation) yielded the highest fresh		
		ha ⁻¹ , while T ₁ (Control) had the lowest yield at 10.31 t ha ⁻¹ . The		
		incidence was also recorded in T_2 (2.67%), followed by T_3		
		Control) had the highest disease incidence at 8.9%. T_2 and T_3		
		e effective in reducing rhizome rot disease. At the initial stage,		
		oil population was similar among all treatments. However, at the		
		Nematicide Drenching) had the lowest nematode soil population C_{CC} soil, while C_{CC} (<i>P. chlamydosporia</i>) had the highest at 47.5		
		This suggests that T_3 & T_3 was effective in reducing the nematode		
	population in the			
	population in t	IIC JUII.		

CUMIN

Project Code	CUM/CP/7.1	Project Title	Eco-friendly	management of cumin blight
Centres	Jaugdan, Jobner, Mandor.			
Date of start	2022-23	Date of closure/	duration	3 years

Experimental details

- Experimental Design: RBD
- Replication: 3
- Variety: Gujarat Cumin 4 (GC 4)
- Plot Size and Spacing: 4m x 3.0 m(Gross), 3.0 m x 24 m (Net), 30 cm row spacing,
- Seed Rate: 10-12 kg ha⁻¹.
- Sowing time: October November

Treatments: 11

	Seed treatment	Pseudomonas fluorescens 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 10 g Kg ⁻¹ seed
T ₁	Precautionary sprays (4 sprays)	Pseudomonas fluorescens 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 50 g 10L ⁻¹ water
T_2	Seed treatment	Pseudomonas fluorescens 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 10 g Kg ⁻¹ seed + <i>Trichoderma harzianum</i> 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 10 g Kg ⁻¹ seed
12	Precautionary sprays (4 sprays)	Pseudomonas fluorescens 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 50 g 10L ⁻¹ water + <i>Trichoderma harzianum</i> 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 50 g 10L ⁻¹ water
Т.	Seed treatment	Pseudomonas fluorescens 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 10 g Kg ⁻¹ seed + <i>Trichoderma viride</i> 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 10 g Kg ⁻¹ seed
T ₃	Precautionary sprays (4 sprays)	Pseudomonas fluorescens 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 50 g 10L ⁻¹ water + <i>Trichoderma viride</i> 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 50 g 10L ⁻¹ water
T ₃	Seed treatment	Trichoderma harzianum 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 10 g Kg ⁻¹ seed
13	Precautionary sprays (4 sprays)	Trichoderma harzianum 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 50 g 10L ⁻¹ water
T ₃	Seed treatment	Trichoderma viride 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 10 g Kg ⁻¹ seed
13	Precautionary sprays (4 sprays)	Trichoderma viride 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 50 g 10L ⁻¹ water
т.	Seed treatment	Bacillus subtilis 1.15 WP (1x108 cfu g ⁻¹) @ 10 g Kg ⁻¹ seed
T ₃	Precautionary sprays (4 sprays)	Bacillus subtilis 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 40 g 10L ⁻¹ water
T ₇	Seed treatment	Bacillus subtilis 1.15 WP (1x108 cfu g-1) @ 10 g Kg-1 seed + Trichoderma harzianum 1.15 WP (2x106 cfu g- 1) @ 10 g Kg-1 seed
17	Precautionary sprays (4 sprays)	Bacillus subtilis 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 40 g 10L ⁻¹ water + <i>Trichoderma harzianum</i> 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 50 g 10L ⁻¹ water
T ₈	Seed treatment	Bacillus subtilis 1.15 WP (1x10 ^g cfu g ⁻¹) @ 10 g Kg ⁻¹ seed + Trichoderma viride 1.15 WP (2x10 ^g cfu g ⁻¹) @ 10 g Kg ⁻¹ seed
18	Precautionary sprays (4 sprays)	Bacillus subtilis 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 40 g 10L ⁻¹ water + <i>Trichoderma viride</i> 1.15 WP (2x10 ⁶ cfu g ⁻¹) @ 50 g 10L ⁻¹ water
Т9	Seed treatment	Bacillus subtilis 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 10 g Kg ⁻¹ seed + Pseudomonas fluorescens 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 10 g Kg ⁻¹ seed
19	Precautionary sprays (4 sprays)	Bacillus subtilis 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 40 g 10L ⁻¹ water + Pseudomonas fluorescens 1.15 WP (1x10 ⁸ cfu g ⁻¹) @ 50 g 10L ⁻¹ water
T ₁₀	Standard chemical Check (3 sprays)	Three sprays of kresoxim- methyl 44.3 SC @ 0.044 % (10 ml 10L ⁻¹ water) (First spray at 35 days after germination and subsequent two spays at 10 days interval after first spray)
T ₁₁	Control	Water spray

Note: Common furrow application of neem cake @ 1 t ha⁻¹ will be made at the time of sowing Standard package of practices should be followed.

Work done/achie	 Seed yield (q ha⁻¹) 1000 seed weight Volatile oil (%) Fungicide residue analysis, if requires Economics and cost benefit ratio Evements during 2023-24 (centre-wise) There was a significant difference in the percent disease intensity of blight and	
	yield of cumin during the experimentation. The minimum blight intensity of 25.25 % and the maximum yield (7.14 q ha ⁻¹) were observed in T ₁₀ (three sprays of kresoxim methyl @ 0.044%) and closely followed by T _{9.} A similar trend was recorded in the case of 1000 seed weight and volatile oil percent.	
Jobner	The results revealed that among the treatments, three sprays of kresoxim-methyl 44.3 SC @ 0.044 % standard chemical check was recorded most effective in controlling cumin blight with lowest disease intensity(9.50%) followed by four spray of <i>Bacillus subtilis</i> 1.15 WP (1x10 ⁸ cfu/g) @ 40 g / 10 L water + <i>Pseudomonas fluorescens</i> 1.15 WP (1x10 ⁸ cfu/g) @ 50 g / 10 L water(19.08%) andfour spray <i>Pseudomonas fluorescens</i> 1.15 WP (1x10 ⁸ cfu/g) @ 50 g / 10 L water + <i>Trichoderma viride</i> 1.15 WP (1x10 ⁶ cfu/g) @ 50 g / 10 L water (22.92%)in comparison to untreated check (45.58%). Maximum yield (5.54 cha ⁻¹) was obtained by three sprayings of kresoxim- methyl 44.3 SC @ 0.044 % standard chemical Check followed by <i>Bacillus subtilis</i> 1.15 WP + <i>Pseudomonas fluorescens</i> 1.15 WP (4.72 q ha ⁻¹) and <i>Pseudomonas fluorescens</i> 1.15 WP + <i>Trichoderma viride</i> 1.15 WP (4.37q ha ⁻¹).	
Mandor	The maximum seed yield was recorded in three sprays of three sprays of kresoxim- methyl 44.3 SC @ 0.044 % (10 ml/10 L water) (First spray at 35 days after germination and subsequent two spays at 10 days interval after first spray) (899 kg ha ⁻¹) which was followed by Seed treatment of <i>Bacillus subtilis</i> 1.15 WP (1x10 ⁸ cfu/g) @ 10 g / kg seed + <i>Pseudomonas fluorescens</i> 1.15 WP (1x10 ⁸ cfu/g) @ 10 g / kg seed + Precautionary sprays (4 sprays) <i>Bacillus subtilis</i> 1.15 WP (1x10 ⁸ cfu/g) @ 40 g / 10 L water + <i>Pseudomonas fluorescens</i> 1.15 WP (1x108 cfu/g) @ 50 g / 10 L water (13.33%) (805 kg ha ⁻¹). However, in control maximum (40%) disease intensity of blight and minimum seed yield (367 kg ha-1) were recorded under the control.	

FENUGREEK

Project Code	FGK/CP/7.1	Project Title	Bio-efficacy	of fungicides against powdery
			mildew of fe	enugreek.
Centres	Coimbatore,	Hisar, Jabalpur, Ja	igudan, Jobne	er, Kota.
Date of start	2022-23	Date of closure/	duration	3 years
Experimental details		 Experimental Design: RBD Replication: 3 Plot Size and Spacing: 3 x 2.5 m; spacing: 30 x 10 cm Sowing time: October – November Treatments: 7 		
		$T_1 = T$ wo foliar s	•	ystrobin 23 % EC @ 0.1% conazole 25.9 % EC @ 0.1%

		T
		$T_3 = Two foliar spray of Hexaconazole 5% SC @ 0.1%$
		$T_3 = Two foliar spray of Propiconazole 25\% EC @ 0.1\%$
		$T_3 = Two foliar spray of Myclobutanil 10% WP @ 0.05%$
		T_3 = Package of respective SAUs (Standard check)
		$T_7 = Control$
		Note: The aforesaid treatments will be applied twice at 15-day
		intervals starting from the appearance of the disease.
Observation R	ecorded	Percent disease intensity (PDI) (Powdery mildew)
		• Test weight 1000 seeds(g)
		• Seed yield (q ha ⁻¹)
		Residue analysis
		• Economics (ICBR Ratio)
Work done/acl	hievements dur	ring 2023-24 (centre-wise)
Coimbatore		ents were imposed two times viz., (i) at the time of symptom
		(ii) 15-days after the first spray. The results showed that the
	different tre	atments were able to manage the powdery mildew at different levels
	when comp	ared to control. Two foliar sprays of propiconazole (0.1%) at 15
		l was found most effective in controlling the intensity of powdery
		ase with a mean PDI of 8.52 and a higher seed yield of 5.45 q ha ⁻¹
		to the control which recorded PDI of 29.63 and lowest yield (4.16
	q ha ⁻¹).	
Hisar	_	ant differences were obtained for all the treatments except branches
		d pod length. Maximum number of pods per plant (72.1) and seed
		0 kg ha ⁻¹) was recorded with the application of two foliar spray of
	-	il 10% WP @ 0.05%. All the fungicides control the disease ranging
		o 68.94 per cent. Minimum disease intensity (21.8%) was found oliar spray of Mycolbutanil 10% WP @ 0.05% and per cent disease
		68.94 per cent
Jabalpur		nent was designed using a Randomized Block Design with three
Jaoaipai	_	to identify the most effective chemical control strategies for
	-	powdery mildew in fenugreek, prioritizing safety and
		ness. Two foliar sprays of Azoxystrobin (23% EC @ 0.1%),
		ele (25.9% EC @ 0.1%), Hexaconazole (5% SC @ 0.1%),
		ole (25% EC @ 0.1%), Myclobutanil (10% WP @ 0.05%), and a
	control wer	e applied at 15-day intervals starting at the onset of the disease.
	Percent dise	ase intensity was calculated before spraying and 10 days after each
	spray using	the 0-5 scale as per the scale given by Rathi and Tripathi (1994).
		nt involving two foliar sprays of Tebuconazole 0.1% (T2) was the
		ve in disease management, followed by the application of Sulphur,
		il 0.05%, and Propiconazole 0.1%, with PDI values of 20.7, 22.0,
		7 respectively, after the second spray. The highest seed yield (22.56
		achieved with Tebuconazole 0.1% spray, representing a 27.83%
To any de		er the control.
Jagudan	-	ant study, all treatments demonstrated significantly lower powdery
		ensity compared to the untreated control. The most effective
		were T_3 (two foliar sprays of hexaconazole 5SC (0.1%)) achieving bowdery mildew intensity at 12.55% and the highest seed yield of
	•	closely followed by the package of practices (standard check) (T ₃),
		vas also reflected in the 1000 seed weight.
	This delid v	rus aiso iciiccica in aic 1000 seca weight.

Jobner	The seven treatments consisted of spray of different fungicides viz.,
	Azoxystrobin 23%EC @ 0.10%, Tebuconazole 25.9%EC @ 0.10%,
	Hexaconazole 5% SC @ 0.10%, Propiconazole 25% EC @ 0.10%,
	Myclobutanil 10% WP @ 0.05%, Wettable Sulphur 80% WP (Standard Check)
	and Plain Water (Untreated Control) spray were evaluated in RBD with 3
	replications. Result of 2023 revealed that two spray of Hexaconazole 5% SC at
	15 days interval was found most effective in controlling powdery mildew
	disease of fenugreek with lowest disease intensity (7.90%) followed by Wettable
	Sulphur 80% WP (11.64%) and Propiconazole 25% EC (13.00%) in comparison
	to untreated check (45.23%). Maximum yield (21.30 q ha ⁻¹ .) was obtained by
	two sprayings of Hexaconazole 5% SC followed by Wettable Sulphur 80% WP
	(19.85 q ha ⁻¹ .) and Propiconazole 25% EC (17.96 q ha ⁻¹ .).
TZ 4	
Kota	Results revealed that all the treatment significantly reduced powdery mildew
	intensity as compared to control. The minimum disease intensity (15.03%) and
	maximum disease control (83.7%) as well as maximum yield (1197 kg ha ⁻¹) was
	recorded with two foliar sprays of Tebuconazole 25.9 % EC @ 0.1% at the
D : 1	initiation of powdery mildew.
Raigarh	Minimum disease intensity (6.9%) and maximum yield(q ha ⁻¹) 14.31 found in
	treatment application of carbendazim 0.1% at the appearance of the disease and
	followed by 35 DAS after first spray Wettable sulphur 0.2 %. The next best
	treatment was Treatment Two Foliar spray of Tebuconazole 25.9% EC @
	$0.1\%(T_2)$.

NIGELLA

Project Code	NGL/CP/7.1	Project Title	Managemen	t of root rot of nigella.
Centres	Dholi, Kumarganj, Raigarh.			
Date of start	2022-23 I	Date of closure/	duration	3 years
Experimental de	tails T T T T T T T T T T T T T T T T T T	• Experiments Replication Plot Size at Sowing time Treatments: 7 The Soil application app	ntal Design: Fon: 3 and Spacing: 5 me: October - on with Talc-b imum 250kg on with Musta on with Neem on with Boscal 2%. g with Azoxy 2%. renching: 2.0 of water. 3.0 le e applied per drenching (3	RBD 3 x 1.0 m; spacing: 30 x 10 cm November based <i>Trichoderma viride</i> @2.5kg FYM per ha. ard oil cake @1 ton per ha. a cake @1 ton per ha. r oil cake @1 ton per ha. id (25.2%) + Pyraclostrobin strobin (20%) + Difenoconazole Og or 2.0ml of fungicides should it. of thus prepared fungicidal bed (3m²) for soil drenching.

Observation Rec	corded	Date of observation of 1 st disease incidence	
		Per cent disease incidence (PDI)	
		• Yield (kg ha ⁻¹)	
		 Incremental Cost-Benefit Ratio (ICBR) 	
		 Fungicide Residue Analysis in seeds after harvest. 	
		Where, Per cent disease incidence (PDI) =	
		$\frac{\text{No.of disease plants}}{\text{Total no.of plants}} x100$	
		Total no.of plants	
		• Incremental Cost Benefit Ratio (ICBR) = Income from yield increased over control/ha x100	
		$\frac{\text{Mediate Holm yield increased over control/in}}{\text{Expenditure incured for sparying/ha}}x100$	
XX7 1 1 / 1 ·	4 1		
	chievements during 2023-24 (centre-wise)		
Dholi	Among the treatments T ₃ , involving soil drenching with Boscalid (25.2%) +		
	Pyraclotrobin (12.8%) WG @0.2%, exhibited the lowest disease incidence at		
	7.40%, in contrast to the control group which had a disease incidence of		
	18.16%).		
Kumarganj	In Manager	nent of root rot of nigella, among the seven tested treatments	
	minimum di	sease incidence (6.36%) and higher yield (8.89 q ha ⁻¹) was recorded	
	in the treatment T ₃ followed by T ₃ with disease incidence (6.87 %) and yield		
	(8.11 q ha ⁻¹) and in T ₁ - Soil application with Talc based <i>Trichodermaviridae</i> @		
	2.5 kg- disease incidence (6.80 %) and yield (7.78 q ha ⁻¹).		
Raigarh	Minimum disease incidence found in treatment T ₁ (11.67%), T ₃ (10.26%) and		
	$T_3(7.16)$ and yield 6.50 q ha ⁻¹ ,6.8 and 7.2 q ha ⁻¹ respectively.		

SEED SPICES

D : . C 1	GG/GD/7.1	D : (F):1	0 1 '. ' 0 1'	
Project Code	SS/CP/7.1	Project Title	Survey and monitoring of diseases and insect	
			pests of seed spices for development of	
			prediction models	
Centres	Coimbatore, D	holi, Guntur, Ja	agudan, Jobner, Kalyani, Kumarganj, Mandor,	
	Raigarh, Sanar	nd		
Date of start	Rabi 2020-21	Date of closure	e/ duration 5 years	
Experimental d	letails	A. Field surve	y of diseases and insect pests of seed spices	
		(cumin, cor	iander, fenugreek, fennel, ajwain and nigella)	
		Proposed areas	s of survey:	
		• Cumin-	- Rajasthan and Gujarat	
		 Coriano 	der- Rajasthan, U.P., Chhattisgarh, Bihar, Tamil	
		Nadu		
		• Fenugreek- Rajasthan, U. P., Chhattisgarh, Bihar,		
		Tamil Nadu		
		 Fennel- 	- Gujarat, Rajasthan, UP	
		 Ajwain 	- Rajasthan, Gujrat, M.P., Telangana, Andhra	
		Pradesl		
		 Nigella 	- Rajasthan, M.P., Bihar, Telangana, Andhra	
		Pradesh	n, Chhattisgarh, West Bengal	
		R Monitoring	diseases and insect pests of seed spices on the	
		Institute farm	discuses and insect pests of seed spices on the	
			Alternaria blight, powdery mildew, aphids and	
		thrips	Americana origin, powdery mildew, apinus and	

- Coriander: Stem gall, powdery mildew, aphids, seed wasps
- Fenugreek: Powdery mildew, downy mildew, aphids, jassids
- Fennel: *Ramularia* blight, powdery mildew, aphids, seed wasps
- Ajwain: Root rot, aphids, lygus bug
- Nigella: Root rot, termite, capsule borer

Methodology to be adopted

- Survey will be conducted in farmers' fields of cumin, coriander, fenugreek, fennel, ajwain and nigella for the prevalence of various diseases and insect pests during the cropping season.
- The local popular/ susceptible variety of cumin, coriander, fenugreek and fennel crops will be planted in experimental plots.
- Plots (5m x 5m) will be kept natural conditions without any plant protection measures for any of the pests/ disease on seed spice crop. Observations for diseases and pests along with meteorological factors will be taken from crop germination to maturity at weekly interval.
- Standard package of practices should be followed except plant protection measures.

Observation Recorded

- Disease score of root diseases and DI will be calculated.
- Disease score of foliar diseases and PDI will be calculated
- Number of insects /umbel/5cm twig/percentage seed /plant damage
- Meteorological data & mapping of disease hot spots
- Correlation between meteorological parameters and disease/pest distribution/ incidence

Work done/achievements during 2023-24 (centre-wise)

Dholi

Field survey of diseases and insect pests of seed spices (coriander, fenugreek & nigella):

Surveyed area: Muzaffarpur district of state of Bihar.

Coriander: Coriander crop cultivated by farmer was found to be affected by stem gall disease caused by *Protomyces macrosporus*. Disease incidence was found in the range of 10 to 60% with mean disease incidence of 33%.

Fenugreek: No disease was observed in the crop.

Nigella: Crop was not found cultivated by farmers.

Monitoring diseases and insect pests of seed spices on the Institute farm:

Result (2023-24):

Coriander: Coriander crop grown in plot (5m x 5m) under natural condition without any plant protection measures was found to be affected by stem gall disease caused by *Protomyces macrosporus*. Disease incidence was found 45.00%. Average population of aphid /5 twigs was observed 26.80 during 3rd S.M.D.

Fenugreek: No disease was observed in the crop.

Average population of aphid /5 twigs was observed 28.60 during 3rd S.M.D.

Guntur	No incidence of Root rot, aphids, Lygus bug was observed during the year. Occurrence of South East Asia thrips (<i>Thrips parvispinus</i> Karny) was observed in the research station.
Jagudan	Institute farm: The incidence of blight was moderate (34.50%) in cumin. The powdery mildew was recorded with lower intensity (16.90%) in cumin. The aphid population was recorded higher as 56.0/ umbel, whereas, thrips population was observed 5.8 per plant. In fennel, the maximum Ramularia blight of 26.50 per cent was recorded. The aphid population was recorded moderate (18.23). The incidence of seed wasp was not observed during the experimentation period. In coriander, the lower intensity of powdery mildew (11.80%) was recorded. The aphid population was observed as 14.46/umbel, whereas no seed wasp infestation was recorded during the experimentation period. In fenugreek, the powdery mildew intensity was recorded moderate (28.65%). The aphid population was recorded as 23.0/umbel, whereas leaf hopper was 2.9 per plant. In ajwain,, during the experimentation period the incidence of pest and diseases viz., root rot, aphids, Lygus bugs etc. was not observed. Field survey: the incidence of blight and powdery mildew in cumin was moderate to high at different locations. The aphid infestation was ranged from low to moderate in cumin. In fennel, the infestation of Ramularia blight and aphid was recorded lower. In ajwain, the incidence of any pests and disease was
Jobner	not recorded during the experimentation period. Experiments were conducted during Rabi 2023-24 at Institute Research Farm for cumin, coriander, fenugreek, fennel, ajwian and nigella. Seed spices crops were sown in natural condition without any plant protection measures for any of the pests/disease on seed spices crops. Seed spices crops were evaluated in plot size of 5.0x5.0 sq.m.accommodating with crop geometry maintained by thinning at Institute Research Farm, SKNCOA, Jobner. Experimental site at Institute Research Farm as well as roving survey of different field was done in cumin, coriander, fenugreek, fennel and ajwian
	during the year 2023-24. Cumin: In cumin disease intensity of <i>Alternaria</i> blight, wilt and powdery mildew and aphid infestation were recorded in institute research farmand surveyed areas.
	Coriander: Disease intensity of stem gall was not observed in institute farm. Disease intensity of powdery mildew and aphid and seed wasps infestation were recorded in research farmand surveyed areas.
	Fenugreek: In fenugreek crop disease intensity of powdery mildew and downy mildew and aphid infestation were recorded in institute research farmand surveyed areas.
	Fennel: In fennel crop disease intensity of <i>Ramularia</i> blight and powdery mildew and aphid and seed wasps infestation were recorded and surveyed areas.
	Ajwain: In ajwain crop disease incidence of root rot and aphid, lygus bug infestations were recorded in institute farm.
Kalyani	Nigella: In nigella crop very less pest infestation was recorded in institute farm. A. Institute Farm Monitoring (2023-24): The seed spices are not very common and popular to the farmers of this area, except coriander for leaf purpose and nigella in the northern part of the state. In

	our BCKV farm coriander, fennel, fenugreek and black cumin were grown in						
	Rabi season for experimental trial and seed purpose. No severe attack						
	1 1						
	disease/insect pest was noticed in the field. But sowing time is maintained						
	strictly within 15 November.						
	B. Off Farm Survey (2023-24):						
	Since the last year a survey was conducted in 2 districts of West Bengal (North						
	and South Dinajpur) where Nigella or Black cumin is cultivated moderately in						
	the state to identify different diseases and pests occurring in those areas and to						
	assess the severity of different diseases and pests of Nigella, if available. Nine						
	well distributed locations within those 2 districts were selected for the survey.						
	In each location the survey was done at 3 different places. No severe attack of						
	pests was found. Eccept one disease i.e. wilt disease of Nigella caused by						
	Fusarium oxysporum f. sp. cumini was evident in all the fields of all the places						
	surveyed.						
Mandor	Survey and monitoring of diseases (SS/CP/7.1) of cumin was conducted during						
171anaoi	rabi 2023-24 and found that the disease Alternaria blight was first appeared in						
	the first fortnight of January at Mandor. During survey of major cumin growing						
	area of Jodhpur region, percent disease intensity of Alternaria blight ranged						
	from 15% to 54%, Fusarium wilt from 3% to 22% and powdery mildew from						
	<u> </u>						
Delegal	0% to 4%.						
Raigarh	The field survey revealed that among seed spices diseases, powdery mildew						
	was most prevalent in coriander, with a disease intensity of 22.12%, followed						
	by Alternaria leaf blight at 17.45% and root rot in fenugreek at 6.3%. At the						
	institute farms, Coriander crops was affected with powdery mildew whereas						
	aphids affected the fennel crop. Ajwain as well as fenugreek were not affected						
	by any diseases or insects.						

Research Programmes at a glance (Crop-wise)

Crop Names	GENETIC RESOURCES & CROP IMPROVEMENT		CROP MANAGEMENT		CROP PROTECTION & FOOD SAFETY		Total
	List of Projects	No.	List of Projects	No.	List of Projects	No.	No. of Projects
Black pepper	PEP/CI/1.1, PEP/CI/3.7	2			PEP/CP/5.10, PEP/CP/7.1	2	4
Cardamom	CAR/CI/1.1, CAR/CI/3.9, CAR/CI/4.4, CAR/CI/4.5	4	CAR/CM/5.5, CAR/CM/5.6	2	CAR/CP/6.11, CAR/CP/6.12, CAR/CP/6.13	3	9
Large cardamom	LCA/CI/1.1, LCA/CI/2.1	2	LCA/CM/5.1	1			3
Ginger	GIN/CI/1.1, GIN/CI/2.5, GIN/CI/2.6, GIN/CI/2.7, GIN/CI/4.3	5	GIN/CM/4.1, GIN/CM/5.1, GIN/CM/5.2	3	GIN/CP/6.15, GIN/CP/7.1, GIN/CP/7.2	3	11
Turmeric	TUR/CI/1.1, TUR/CI/2.8, TUR/CI/2.9, TUR/CI/2.11	4	TUR/CM/5.1, TUR/CM/5.2	2	TUR/CP/7.8, TUR/CP/7.9, TUR/CP/7.10	3	9
Tree spices	TSP/CI/1.1, TSP/CI/1.2, TSP/CI/2.1, TSP/CI/2.4	4	TSP/CM/5.1	1			5
Coriander	COR/CI/1.1, COR/CI/2.8, COR/CI/4.1	3	COR/CM/5.1, COR/CM/6.1	2			5
Cumin	CUM/CI/1.1, CUM/CI/2.5	2			CUM/CP/7.1	1	3
Fennel	FNL/CI/1.1, FNL/CI/2.8	2			FGK/CP/7.1	1	3
Fenugreek	FGK/CI/1.1, FGK/CI/2.5	2	FGK/CM/5.1, FGK/CM/6.1	2			4
Ajwain	AJN/CI/2.1	1					1
Nigella					NGL/CP/7.1	1	1
Seed spices					SS/CP/7.1	1	1
Saffron	Project mode	1					1
Kalazeera	Project mode	1					1